{"title":"Shaping apple tree architecture: 1,3,4-oxathiazol-2-one derivatives as inhibitors of MdDOX-Co activity.","authors":"Yuta Kitajima, Taiki Inoue, Kojiro Kawada, Tatsuo Saito, Ikuo Takahashi, Kohji Murase, Tadao Asami, Masatoshi Nakajima","doi":"10.1093/bbb/zbaf103","DOIUrl":null,"url":null,"abstract":"<p><p>Labor shortages threaten global apple production, thereby encouraging new strategies to improve orchard management. The growth of columnar apples, controlled by the MdDOX-Co gene, enables vertical growth with minimal lateral branching, allowing for high-density planting and easier harvesting. MdDOX-Co encodes 2-oxoglutarate-dependent dioxygenase (2ODD, DOX). This study aimed to identify selective chemical inhibitors of MdDOX-Co. We synthesized the parental C6-based analogs featuring a heterocyclic 1,3,4-oxathiazol-2-one ring and evaluated their inhibitory activity. Compounds retaining the 1,3,4-oxathiazol-2-one core exhibited strong in vitro inhibition and promoted seedling elongation in MdDOX-Co overexpressing Arabidopsis. Structure-activity analysis confirmed that the 1,3,4-oxathiazol-2-one ring was essential, with tolerance for side-chain variations, including bulky groups. Selectivity assays indicated minimal off-target effects on the related 2ODD enzymes. Molecular modeling suggested the compatibility of the lead compounds with the MdDOX-Co active site. These findings encourage us to develop MdDOX-Co-targeted agrochemicals to chemically regulate tree architecture and enhance productivity during apple cultivation.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":"1456-1463"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience, Biotechnology, and Biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbaf103","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Labor shortages threaten global apple production, thereby encouraging new strategies to improve orchard management. The growth of columnar apples, controlled by the MdDOX-Co gene, enables vertical growth with minimal lateral branching, allowing for high-density planting and easier harvesting. MdDOX-Co encodes 2-oxoglutarate-dependent dioxygenase (2ODD, DOX). This study aimed to identify selective chemical inhibitors of MdDOX-Co. We synthesized the parental C6-based analogs featuring a heterocyclic 1,3,4-oxathiazol-2-one ring and evaluated their inhibitory activity. Compounds retaining the 1,3,4-oxathiazol-2-one core exhibited strong in vitro inhibition and promoted seedling elongation in MdDOX-Co overexpressing Arabidopsis. Structure-activity analysis confirmed that the 1,3,4-oxathiazol-2-one ring was essential, with tolerance for side-chain variations, including bulky groups. Selectivity assays indicated minimal off-target effects on the related 2ODD enzymes. Molecular modeling suggested the compatibility of the lead compounds with the MdDOX-Co active site. These findings encourage us to develop MdDOX-Co-targeted agrochemicals to chemically regulate tree architecture and enhance productivity during apple cultivation.
期刊介绍:
Bioscience, Biotechnology, and Biochemistry publishes high-quality papers providing chemical and biological analyses of vital phenomena exhibited by animals, plants, and microorganisms, the chemical structures and functions of their products, and related matters. The Journal plays a major role in communicating to a global audience outstanding basic and applied research in all fields subsumed by the Japan Society for Bioscience, Biotechnology, and Agrochemistry (JSBBA).