VHL Suppresses Angiogenesis Through HIF-1a-Mediated Ang/Tie2/AMPK/VEGF Signaling Pathway in Tie-2 Expressed Macrophages (TEMs).

IF 1.6 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Min-Cheng Zou, Yu-Hao Yang, Yun-Peng Mao, Ya Liu, Hui-Bing Gao, Wen-Dong Liu, Jia Liu, Fu-Yong Zhang
{"title":"VHL Suppresses Angiogenesis Through HIF-1a-Mediated Ang/Tie2/AMPK/VEGF Signaling Pathway in Tie-2 Expressed Macrophages (TEMs).","authors":"Min-Cheng Zou, Yu-Hao Yang, Yun-Peng Mao, Ya Liu, Hui-Bing Gao, Wen-Dong Liu, Jia Liu, Fu-Yong Zhang","doi":"10.1007/s10528-025-11175-3","DOIUrl":null,"url":null,"abstract":"<p><p>The cartilage of the growth plate is crucial for the longitudinal growth of long bones but is highly susceptible to injury due to its avascular nature. Growth plate injuries frequently result in the formation of a bone bridge, leading to limb length discrepancies and angular deformities. Angiogenesis is a critical factor in the repair process, as new blood vessels deliver oxygen, nutrients, and cellular components essential for bone regeneration. Tie2-expressing macrophages (TEMs) play a pivotal role in promoting angiogenesis in tumors and remodeled tissues; however, their precise function and regulatory mechanisms in epiphyseal plate injury repair remain unclear. This study investigates the role of the VHL/HIF-1α/Tie2/AMPK/Autophagy axis in TEM-mediated angiogenesis. Our findings identify VHL as a key regulator of TEM-driven angiogenesis, where VHL overexpression suppresses, and VHL silencing enhances the pro-angiogenic potential of TEMs. Mechanistically, VHL downregulates HIF-1α, reducing Tie2 surface expression, which in turn modulates AMPK-mediated autophagy. This pathway influences VEGF secretion, thereby promoting endothelial cell proliferation, migration, survival, and tube formation. These findings uncover a novel regulatory mechanism governing TEM-mediated angiogenesis and offer insights into potential therapeutic strategies to enhance vascularization, improve growth plate injury repair, and mitigate long-term orthopedic complications.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-025-11175-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The cartilage of the growth plate is crucial for the longitudinal growth of long bones but is highly susceptible to injury due to its avascular nature. Growth plate injuries frequently result in the formation of a bone bridge, leading to limb length discrepancies and angular deformities. Angiogenesis is a critical factor in the repair process, as new blood vessels deliver oxygen, nutrients, and cellular components essential for bone regeneration. Tie2-expressing macrophages (TEMs) play a pivotal role in promoting angiogenesis in tumors and remodeled tissues; however, their precise function and regulatory mechanisms in epiphyseal plate injury repair remain unclear. This study investigates the role of the VHL/HIF-1α/Tie2/AMPK/Autophagy axis in TEM-mediated angiogenesis. Our findings identify VHL as a key regulator of TEM-driven angiogenesis, where VHL overexpression suppresses, and VHL silencing enhances the pro-angiogenic potential of TEMs. Mechanistically, VHL downregulates HIF-1α, reducing Tie2 surface expression, which in turn modulates AMPK-mediated autophagy. This pathway influences VEGF secretion, thereby promoting endothelial cell proliferation, migration, survival, and tube formation. These findings uncover a novel regulatory mechanism governing TEM-mediated angiogenesis and offer insights into potential therapeutic strategies to enhance vascularization, improve growth plate injury repair, and mitigate long-term orthopedic complications.

VHL通过hif -1a介导的Tie-2表达巨噬细胞中Ang/Tie2/AMPK/VEGF信号通路抑制血管生成
生长板的软骨对长骨的纵向生长至关重要,但由于其无血管的性质,它极易受到损伤。生长板损伤经常导致骨桥的形成,导致肢体长度差异和角度畸形。血管生成是修复过程中的一个关键因素,因为新生血管为骨再生提供氧气、营养和细胞成分。表达tie2的巨噬细胞(TEMs)在促进肿瘤和重建组织血管生成中起关键作用;然而,它们在骨骺板损伤修复中的确切功能和调控机制尚不清楚。本研究探讨了VHL/HIF-1α/Tie2/AMPK/自噬轴在tem介导的血管生成中的作用。我们的研究结果表明VHL是tem驱动的血管生成的关键调节因子,其中VHL过表达抑制,而VHL沉默增强了tem的促血管生成潜力。从机制上讲,VHL下调HIF-1α,降低Tie2表面表达,进而调节ampk介导的自噬。该途径影响VEGF分泌,从而促进内皮细胞增殖、迁移、存活和小管形成。这些发现揭示了tem介导的血管生成的一种新的调节机制,并为增强血管化、改善生长板损伤修复和减轻长期骨科并发症的潜在治疗策略提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical Genetics
Biochemical Genetics 生物-生化与分子生物学
CiteScore
3.90
自引率
0.00%
发文量
133
审稿时长
4.8 months
期刊介绍: Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses. Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication. Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses. Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods. Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信