Aggregation-Driven Fluorescence: Decoding Cooperative Artificial Motors Enable Bimodal Emission in Semi-Solid Biohybrid Systems.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE
Sudeshna Kalita, Anup Singhania, Amit Kumar Pathak, Prerna Chettri, Anirban Bandyopadhyay, Subrata Ghosh
{"title":"Aggregation-Driven Fluorescence: Decoding Cooperative Artificial Motors Enable Bimodal Emission in Semi-Solid Biohybrid Systems.","authors":"Sudeshna Kalita, Anup Singhania, Amit Kumar Pathak, Prerna Chettri, Anirban Bandyopadhyay, Subrata Ghosh","doi":"10.1002/marc.202500334","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the cooperative working principle of artificial rotary motors is essential for developing complex biohybrid systems. Such systems could enable critical tasks like proton and ion transport through artificial membranes or gating in artificial valves. To investigate cooperative transitions, we studied our double ratchet motor (DRM), composed of a Brownian rotor and a power stroke rotor, both coupled to a shared stator (-C≡C-). While DRMs exhibit stable rotary motion in compatible solvents, their integration into adaptive bio-synthetic systems remains challenging. We explored DRM behavior in a semi-solid chitosan matrix, revealing thermally activated metastable rotational states. The accumulation of these states led to aggregation-induced fluorescence emission, displaying both high-energy blue shifts and red shifts. We fabricated DRM-embedded chitosan hybrid films to investigate this bimodal emission, attributing DRM aggregation to binary solvent-induced clustering. These findings provide insight into the molecular mechanisms underpinning motor-driven fluorescence modulation. This study advances the potential of artificial motors in biohybrid materials, paving the way for their integration into biochemical reaction networks and adaptive synthetic systems.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e00334"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202500334","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the cooperative working principle of artificial rotary motors is essential for developing complex biohybrid systems. Such systems could enable critical tasks like proton and ion transport through artificial membranes or gating in artificial valves. To investigate cooperative transitions, we studied our double ratchet motor (DRM), composed of a Brownian rotor and a power stroke rotor, both coupled to a shared stator (-C≡C-). While DRMs exhibit stable rotary motion in compatible solvents, their integration into adaptive bio-synthetic systems remains challenging. We explored DRM behavior in a semi-solid chitosan matrix, revealing thermally activated metastable rotational states. The accumulation of these states led to aggregation-induced fluorescence emission, displaying both high-energy blue shifts and red shifts. We fabricated DRM-embedded chitosan hybrid films to investigate this bimodal emission, attributing DRM aggregation to binary solvent-induced clustering. These findings provide insight into the molecular mechanisms underpinning motor-driven fluorescence modulation. This study advances the potential of artificial motors in biohybrid materials, paving the way for their integration into biochemical reaction networks and adaptive synthetic systems.

聚合驱动荧光:解码合作人工马达使半固体生物混合系统的双峰发射。
了解人工旋转电机的协同工作原理对开发复杂的生物混合动力系统至关重要。这样的系统可以实现关键任务,如质子和离子通过人工膜传输或在人工阀门中设置门控。为了研究合作跃迁,我们研究了双棘轮电机(DRM),它由布朗转子和功率行程转子组成,两者都耦合到一个共享定子(-C≡C-)。虽然drm在相容溶剂中表现出稳定的旋转运动,但将其整合到自适应生物合成系统中仍然具有挑战性。我们探索了半固体壳聚糖基质中DRM的行为,揭示了热激活的亚稳态旋转状态。这些态的积累导致聚集诱导的荧光发射,显示出高能蓝移和红移。我们制备了嵌入DRM的壳聚糖杂化膜来研究这种双峰发射,将DRM聚集归因于二元溶剂诱导的聚类。这些发现为支持电机驱动荧光调制的分子机制提供了见解。这项研究推进了人工马达在生物混合材料中的潜力,为其融入生化反应网络和自适应合成系统铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信