ER-phagy Activation by AMFR Attenuates Cardiac Fibrosis Post-Myocardial Infarction via mTORC1 Pathway

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhixiang Wang, Kaifan Niu, Wei Liu, Xinyun Wang, Boshen Yang, Taixi Li, Yizhi Chen, Yuanyuan Jin, Yu Chen, Yangyi Lin, Xian Jin
{"title":"ER-phagy Activation by AMFR Attenuates Cardiac Fibrosis Post-Myocardial Infarction via mTORC1 Pathway","authors":"Zhixiang Wang,&nbsp;Kaifan Niu,&nbsp;Wei Liu,&nbsp;Xinyun Wang,&nbsp;Boshen Yang,&nbsp;Taixi Li,&nbsp;Yizhi Chen,&nbsp;Yuanyuan Jin,&nbsp;Yu Chen,&nbsp;Yangyi Lin,&nbsp;Xian Jin","doi":"10.1002/advs.202504552","DOIUrl":null,"url":null,"abstract":"<p>Progressive cardiac fibrosis post myocardial infarction (MI) drives pathological remodeling and heart failure, yet the role of endoplasmic reticulum-selective autophagy (ER-phagy) in this process remains unclear. Autocrine Motility Factor Receptor (AMFR) is a recently identified ER-phagy regulator, whose function under myocardial pathology remains poorly understood. Here, it is found that FAM134B-mediated ER-phagy activity is elevated in fibrotic mouse heart tissues post-MI and in cardiac fibroblasts stimulated by TGF-β1. AMFR knockout in mice aggravated cardiac fibrosis post-MI and worsened cardiac function, with scRNA-seq analysis demonstrating that AMFR-null cardiac fibroblasts exhibit a myofibroblast phenotype. Simultaneously, AMFR overexpression in cardiac fibroblasts reduces the expression of profibrogenic proteins in response to TGF-β1 stimulation. AMFR regulates ER-phagy flux and turnover of FAM134B, which leads to the suppression of cardiac fibroblasts activation. Mechanistically, AMFR catalyzed K27-linked (predominant) and K33-linked ubiquitination of FAM134B and enhanced ER-phagy flux, thereby inhibiting the phosphorylation of mTORC1 downstream targets such as S6K1 and 4E-BP. These findings highlight the therapeutic potential of AMFR-driven ER-phagy in suppressing cardiac fibrosis post-MI.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 37","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202504552","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202504552","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Progressive cardiac fibrosis post myocardial infarction (MI) drives pathological remodeling and heart failure, yet the role of endoplasmic reticulum-selective autophagy (ER-phagy) in this process remains unclear. Autocrine Motility Factor Receptor (AMFR) is a recently identified ER-phagy regulator, whose function under myocardial pathology remains poorly understood. Here, it is found that FAM134B-mediated ER-phagy activity is elevated in fibrotic mouse heart tissues post-MI and in cardiac fibroblasts stimulated by TGF-β1. AMFR knockout in mice aggravated cardiac fibrosis post-MI and worsened cardiac function, with scRNA-seq analysis demonstrating that AMFR-null cardiac fibroblasts exhibit a myofibroblast phenotype. Simultaneously, AMFR overexpression in cardiac fibroblasts reduces the expression of profibrogenic proteins in response to TGF-β1 stimulation. AMFR regulates ER-phagy flux and turnover of FAM134B, which leads to the suppression of cardiac fibroblasts activation. Mechanistically, AMFR catalyzed K27-linked (predominant) and K33-linked ubiquitination of FAM134B and enhanced ER-phagy flux, thereby inhibiting the phosphorylation of mTORC1 downstream targets such as S6K1 and 4E-BP. These findings highlight the therapeutic potential of AMFR-driven ER-phagy in suppressing cardiac fibrosis post-MI.

Abstract Image

AMFR激活er吞噬可通过mTORC1途径减轻心肌梗死后心肌纤维化
心肌梗死(MI)后进行性心肌纤维化驱动病理性重构和心力衰竭,但内质网选择性自噬(ER-phagy)在这一过程中的作用尚不清楚。自分泌运动因子受体(AMFR)是最近发现的er吞噬调节因子,其在心肌病理中的功能尚不清楚。本研究发现fam134b介导的er吞噬活性在心肌梗死后纤维化小鼠心脏组织和TGF-β1刺激的心脏成纤维细胞中升高。在小鼠中敲除AMFR会加重心肌梗死后的心脏纤维化和心功能恶化,scRNA-seq分析表明,AMFR缺失的心脏成纤维细胞表现为肌成纤维细胞表型。同时,AMFR在心脏成纤维细胞中的过表达降低了对TGF-β1刺激的促纤维化蛋白的表达。AMFR调节er吞噬通量和FAM134B的周转,从而抑制心脏成纤维细胞的活化。在机制上,AMFR催化了k27连接(主要)和k33连接的FAM134B泛素化,增强了er吞噬通量,从而抑制了mTORC1下游靶点如S6K1和4E-BP的磷酸化。这些发现强调了amfr驱动的er吞噬在抑制心肌梗死后心肌纤维化方面的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信