{"title":"Recent Advances in Dual-Function Janus Membranes for Guided Periodontal and Bone Regeneration.","authors":"Ying Li, Yeying Lin, Tianhua Xiao, Wen Liu, Chengyun Ning, Guoxin Tan, Lei Zhou","doi":"10.1002/adhm.202502888","DOIUrl":null,"url":null,"abstract":"<p><p>Guided Tissue Regeneration (GTR) and Guided Bone Regeneration (GBR) are essential surgical techniques in periodontal therapy, employing barrier membranes to prevent soft tissue infiltration and create a conducive environment for bone regeneration. However, the regenerative performance of conventional barrier membranes remains limited due to poor interface management and insufficient biological functionality. Recent developments have introduced the concept of Janus membranes-structures with asymmetric, dual-function surfaces-offering promising solutions to these challenges. While various reviews have addressed barrier membranes for periodontal and bone regeneration, comprehensive reviews specifically focusing on multifunctional Janus membranes are still limited. This review highlights recent advances in Janus membrane design for GTR and GBR applications. It first outlines key structural configurations, followed by an in-depth analysis of fabrication techniques and functional strategies, including osteogenesis promotion, antibacterial activity, and immunomodulation. By summarizing current progress and challenges, this review offers valuable insights into next-generation biomaterial development for periodontal regeneration. Looking forward, Janus membranes represent a compelling avenue for enhancing clinical outcomes in GTR and GBR procedures.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2502888"},"PeriodicalIF":10.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202502888","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Guided Tissue Regeneration (GTR) and Guided Bone Regeneration (GBR) are essential surgical techniques in periodontal therapy, employing barrier membranes to prevent soft tissue infiltration and create a conducive environment for bone regeneration. However, the regenerative performance of conventional barrier membranes remains limited due to poor interface management and insufficient biological functionality. Recent developments have introduced the concept of Janus membranes-structures with asymmetric, dual-function surfaces-offering promising solutions to these challenges. While various reviews have addressed barrier membranes for periodontal and bone regeneration, comprehensive reviews specifically focusing on multifunctional Janus membranes are still limited. This review highlights recent advances in Janus membrane design for GTR and GBR applications. It first outlines key structural configurations, followed by an in-depth analysis of fabrication techniques and functional strategies, including osteogenesis promotion, antibacterial activity, and immunomodulation. By summarizing current progress and challenges, this review offers valuable insights into next-generation biomaterial development for periodontal regeneration. Looking forward, Janus membranes represent a compelling avenue for enhancing clinical outcomes in GTR and GBR procedures.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.