Evaluating Wet-Seasonal NMME Precipitation Forecasts Over Brazil's Itaipu and Sobradinho Basins

IF 3.5 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Yu-Chuan Tien, Mekonnen Gebremichael, Renato Carlos Zambon
{"title":"Evaluating Wet-Seasonal NMME Precipitation Forecasts Over Brazil's Itaipu and Sobradinho Basins","authors":"Yu-Chuan Tien,&nbsp;Mekonnen Gebremichael,&nbsp;Renato Carlos Zambon","doi":"10.1002/joc.8882","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Reliable seasonal precipitation forecasts are vital for managing hydroelectric power plants, particularly in regions with variable climate conditions. This study evaluates the performance of North American Multi-Model Ensemble (NMME) wet-season precipitation forecasts over two hydroelectric basins in Brazil: Itaipu, characterised by a humid subtropical climate, and Sobradinho, located in a semi-arid region. By assessing six NMME models against Integrated Multi-satellitE Retrievals for GPM (IMERG) data and comparing them with statistical models based on atmospheric-oceanic indices, the study identifies significant spatial and model-dependent variations in forecast skill. NMME models struggle with regional anomalies and extreme events, exhibiting systematic biases and limited predictive capability, particularly in drought-prone Sobradinho. In contrast, statistical models leveraging El Niño–Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Tropical Northern Atlantic Index (TNA), and Tropical Southern Atlantic Index (TSA) indices demonstrate better predictive accuracy. Incorporating select NMME models as predictors improves statistical model performance, highlighting the potential of hybrid modelling approaches. The results emphasise the need for improved parameterisations, localised data integration, and machine learning-driven enhancements to refine seasonal precipitation forecasts for hydropower-critical regions.</p>\n </div>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"45 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8882","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Reliable seasonal precipitation forecasts are vital for managing hydroelectric power plants, particularly in regions with variable climate conditions. This study evaluates the performance of North American Multi-Model Ensemble (NMME) wet-season precipitation forecasts over two hydroelectric basins in Brazil: Itaipu, characterised by a humid subtropical climate, and Sobradinho, located in a semi-arid region. By assessing six NMME models against Integrated Multi-satellitE Retrievals for GPM (IMERG) data and comparing them with statistical models based on atmospheric-oceanic indices, the study identifies significant spatial and model-dependent variations in forecast skill. NMME models struggle with regional anomalies and extreme events, exhibiting systematic biases and limited predictive capability, particularly in drought-prone Sobradinho. In contrast, statistical models leveraging El Niño–Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Tropical Northern Atlantic Index (TNA), and Tropical Southern Atlantic Index (TSA) indices demonstrate better predictive accuracy. Incorporating select NMME models as predictors improves statistical model performance, highlighting the potential of hybrid modelling approaches. The results emphasise the need for improved parameterisations, localised data integration, and machine learning-driven enhancements to refine seasonal precipitation forecasts for hydropower-critical regions.

巴西Itaipu和Sobradinho盆地湿季NMME降水预报评价
可靠的季节性降水预报对于管理水力发电厂至关重要,特别是在气候条件多变的地区。本研究评估了北美多模式集合(NMME)在巴西两个水电流域的湿季降水预报性能:Itaipu为湿润亚热带气候,Sobradinho为半干旱区。通过将6种NMME模式与综合多卫星检索的GPM (IMERG)数据进行对比,并将其与基于大气-海洋指数的统计模式进行比较,该研究确定了预测技能的显著空间和模式依赖差异。NMME模型难以应对区域异常和极端事件,表现出系统偏差和有限的预测能力,特别是在易发生干旱的Sobradinho。相比之下,利用El Niño-Southern涛动(ENSO)、北大西洋涛动(NAO)、热带北大西洋指数(TNA)和热带南大西洋指数(TSA)指数的统计模型具有更好的预测精度。将选择的NMME模型作为预测因子,提高了统计模型的性能,突出了混合建模方法的潜力。结果强调需要改进参数化、局部数据集成和机器学习驱动的增强功能,以完善水电关键地区的季节性降水预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Climatology
International Journal of Climatology 地学-气象与大气科学
CiteScore
7.50
自引率
7.70%
发文量
417
审稿时长
4 months
期刊介绍: The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信