Automatic Signal Discrimination Using Machine Learning on the Data From the Central and Eastern European Infrasound Network

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Marcell Pásztor, Tereza Sindelarova, Daniela Ghica, Ulrike Mitterbauer, Oleksandr Liashchuk, Giorgio Lacanna, Maurizio Ripepe, István Bondár
{"title":"Automatic Signal Discrimination Using Machine Learning on the Data From the Central and Eastern European Infrasound Network","authors":"Marcell Pásztor,&nbsp;Tereza Sindelarova,&nbsp;Daniela Ghica,&nbsp;Ulrike Mitterbauer,&nbsp;Oleksandr Liashchuk,&nbsp;Giorgio Lacanna,&nbsp;Maurizio Ripepe,&nbsp;István Bondár","doi":"10.1029/2025JD044047","DOIUrl":null,"url":null,"abstract":"<p>A labeled data set of 216,681 infrasound detections was compiled using data from the Central and Eastern European Infrasound Network (CEEIN). Detections associated with quarry blasts, thunderstorms, eruptions of the Etna volcano, industrial activity, and the war in Ukraine were categorized using ground truth information, such as seismic and lightning data. To establish benchmark performance, a random forest classifier and a convolutional neural network (CNN) were trained separately, achieving F1 scores of 0.8170 and 0.8248 on the test set, respectively. An ensemble model, combining both classifiers, outperformed them achieving an F1 score of 0.8773. The model, initially trained on four CEEIN arrays, was tested on data from a separate station not included in training. Although performance initially declined, transfer learning and fine-tuning of the CNN and retraining the random forest model improved the ensemble model's F1 score to 0.9056 making it a considerable step. These results represent significant progress in automatic infrasound signal classification for monitoring the atmosphere.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 14","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025JD044047","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025JD044047","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A labeled data set of 216,681 infrasound detections was compiled using data from the Central and Eastern European Infrasound Network (CEEIN). Detections associated with quarry blasts, thunderstorms, eruptions of the Etna volcano, industrial activity, and the war in Ukraine were categorized using ground truth information, such as seismic and lightning data. To establish benchmark performance, a random forest classifier and a convolutional neural network (CNN) were trained separately, achieving F1 scores of 0.8170 and 0.8248 on the test set, respectively. An ensemble model, combining both classifiers, outperformed them achieving an F1 score of 0.8773. The model, initially trained on four CEEIN arrays, was tested on data from a separate station not included in training. Although performance initially declined, transfer learning and fine-tuning of the CNN and retraining the random forest model improved the ensemble model's F1 score to 0.9056 making it a considerable step. These results represent significant progress in automatic infrasound signal classification for monitoring the atmosphere.

Abstract Image

中欧和东欧次声网络数据的机器学习自动信号识别
利用中欧和东欧次声网络(CEEIN)的数据编制了216,681次声探测的标记数据集。与采石场爆炸、雷暴、埃特纳火山喷发、工业活动和乌克兰战争相关的探测使用地面真实信息(如地震和闪电数据)进行分类。为了建立基准性能,我们分别对随机森林分类器和卷积神经网络(CNN)进行训练,在测试集上F1得分分别为0.8170和0.8248。结合两个分类器的集成模型的F1得分为0.8773,优于它们。该模型最初在四个CEEIN阵列上进行了训练,然后在训练中未包括的另一个台站的数据上进行了测试。虽然性能最初有所下降,但CNN的迁移学习和微调以及随机森林模型的再训练将集成模型的F1分数提高到了0.9056,这是一个相当大的进步。这些结果代表了用于大气监测的次声信号自动分类的重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信