Some applications of abelianization in Gromov–Witten theory

IF 1 2区 数学 Q1 MATHEMATICS
Nawaz Sultani, Rachel Webb
{"title":"Some applications of abelianization in Gromov–Witten theory","authors":"Nawaz Sultani,&nbsp;Rachel Webb","doi":"10.1112/jlms.70236","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> be a complex reductive group and let <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math> be two linear representations of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>. Let <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math> be a complete intersection in <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> equal to the zero locus of a <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>-equivariant section of the trivial bundle <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mo>×</mo>\n <mi>X</mi>\n <mo>→</mo>\n <mi>X</mi>\n </mrow>\n <annotation>$E \\times X \\rightarrow X$</annotation>\n </semantics></math>. We explain some general techniques for using quasimap formulas to compute useful <span></span><math>\n <semantics>\n <mi>I</mi>\n <annotation>$I$</annotation>\n </semantics></math>-functions of <span></span><math>\n <semantics>\n <mrow>\n <mi>Y</mi>\n <mrow>\n <mo>/</mo>\n <mo>/</mo>\n </mrow>\n <mi>G</mi>\n </mrow>\n <annotation>$Y\\mathord {/\\hspace{-3.33328pt}/}G$</annotation>\n </semantics></math>. We work several explicit examples, including a rigorous derivation of the conjectural quantum period in Oneto and Petracci (Adv. Geom. <b>18</b> (2018), no. 3, 303–336).</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70236","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G $G$ be a complex reductive group and let X $X$ and E $E$ be two linear representations of G $G$ . Let Y $Y$ be a complete intersection in X $X$ equal to the zero locus of a G $G$ -equivariant section of the trivial bundle E × X X $E \times X \rightarrow X$ . We explain some general techniques for using quasimap formulas to compute useful I $I$ -functions of Y / / G $Y\mathord {/\hspace{-3.33328pt}/}G$ . We work several explicit examples, including a rigorous derivation of the conjectural quantum period in Oneto and Petracci (Adv. Geom. 18 (2018), no. 3, 303–336).

阿贝尔化在Gromov-Witten理论中的一些应用
设G$ G$是一个复约群,设X$ X$和E$ E$是G$ G$的两个线性表示。设Y$ Y$是X$ X$中的一个完全交等于平凡束E × X→X$ E \乘以X \右X$的G$ G$ -等变截面的零轨迹。我们解释了一些使用拟映射公式来计算Y / / G$ Y\mathord {/\hspace{-3.33328pt}/}G$的有用I$ I$ -函数的一般技术。我们研究了几个明确的例子,包括Oneto和Petracci猜想量子周期的严格推导(Adv. Geom. 18 (2018), no. 5)。3, 303 - 336)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信