Heather R. Clendenin, Matthew D. Pollard, Emily E. Puckett
{"title":"Linking Measures of Inbreeding and Genetic Load to Demographic Histories Across Three Species of Bears","authors":"Heather R. Clendenin, Matthew D. Pollard, Emily E. Puckett","doi":"10.1111/eva.70133","DOIUrl":null,"url":null,"abstract":"<p>Historic and contemporary demography affect deleterious variation and inbreeding depression, meaning that measuring genetic diversity alone does not capture the nuances of genetic erosion. Contrasting genomic signatures generated by long-term evolutionary processes to those generated by contemporary changes may help differentiate between populations more or less likely to persist with low diversity or high genetic load. To better understand these interactions, we examined signatures of inbreeding and genetic load across three species of bears: American black (<i>Ursus americanus</i>), brown (<i>U. arctos</i>), and polar (<i>U. maritimus</i>). We sampled across each species' geographic range to represent intraspecific variation in demographic history and ecology. We found that ROH burden often varied more among populations within lineages of species than between species. Admixed populations generally had higher heterozygosity and lower ROH burden; this pattern reversed in small, isolated populations. Greater diversity, including harmful variation, was found in larger, admixed populations—especially those with higher historical effective population sizes (N<sub>E</sub>). However, this did not necessarily correspond to more realized genetic load. While polar bears had low N<sub>E</sub> and low realized load, brown and American black bears exhibited less realized load as N<sub>E</sub> increased and greater realized load in populations with recent bottlenecks and/or indications of recent consanguineous matings. This vantage offers insight into genetic health and threats of genetic erosion within populations and species, which can meaningfully contribute to assessments of threat status. In American black bears, the composite of these metrics revealed a trend in the Louisiana population that may be diagnostic for management intervention based on contemporary demographic changes. In brown bears, the Apennine bear consistently fell outside of the range of values in other populations, reinforcing previous descriptions of isolation, inbreeding, and purging in this population. In polar bears, there were no regional trends that warranted concern with respect to genetic erosion.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"18 7","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70133","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.70133","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Historic and contemporary demography affect deleterious variation and inbreeding depression, meaning that measuring genetic diversity alone does not capture the nuances of genetic erosion. Contrasting genomic signatures generated by long-term evolutionary processes to those generated by contemporary changes may help differentiate between populations more or less likely to persist with low diversity or high genetic load. To better understand these interactions, we examined signatures of inbreeding and genetic load across three species of bears: American black (Ursus americanus), brown (U. arctos), and polar (U. maritimus). We sampled across each species' geographic range to represent intraspecific variation in demographic history and ecology. We found that ROH burden often varied more among populations within lineages of species than between species. Admixed populations generally had higher heterozygosity and lower ROH burden; this pattern reversed in small, isolated populations. Greater diversity, including harmful variation, was found in larger, admixed populations—especially those with higher historical effective population sizes (NE). However, this did not necessarily correspond to more realized genetic load. While polar bears had low NE and low realized load, brown and American black bears exhibited less realized load as NE increased and greater realized load in populations with recent bottlenecks and/or indications of recent consanguineous matings. This vantage offers insight into genetic health and threats of genetic erosion within populations and species, which can meaningfully contribute to assessments of threat status. In American black bears, the composite of these metrics revealed a trend in the Louisiana population that may be diagnostic for management intervention based on contemporary demographic changes. In brown bears, the Apennine bear consistently fell outside of the range of values in other populations, reinforcing previous descriptions of isolation, inbreeding, and purging in this population. In polar bears, there were no regional trends that warranted concern with respect to genetic erosion.
期刊介绍:
Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.