Prisca Lim, Harvey Seim, Oliva Torano, Erika Neave, Se Hyeon Jang, Zackary Johnson, Sara Haines, Scott Gifford, Natalie Cohen, Carly M. Moreno, Margarita Lankford, Cristina Vintimilla Palacios, Adrian Marchetti
{"title":"Drivers of Marine Phytoplankton Diversity and Connectivity in the Galápagos Archipelago Spanning an ENSO Cycle","authors":"Prisca Lim, Harvey Seim, Oliva Torano, Erika Neave, Se Hyeon Jang, Zackary Johnson, Sara Haines, Scott Gifford, Natalie Cohen, Carly M. Moreno, Margarita Lankford, Cristina Vintimilla Palacios, Adrian Marchetti","doi":"10.1111/1462-2920.70146","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The Galápagos Islands are a biodiversity hotspot, largely due to the Equatorial Undercurrent (EUC) which supplies nutrient-rich waters to the euphotic zone and supports enhanced levels of primary productivity performed by phytoplankton. Understanding phytoplankton responses to changing environmental conditions is crucial for regional conservation and management efforts. Research cruises conducted between 2014 and 2022, spanning a major El Niño event in 2015 and a La Niña event in 2022, observed varying oceanic conditions and diverse phytoplankton community composition. At most EUC-influenced stations, larger-sized phytoplankton groups (≥ 5 μm) were dominant while warmer, oligotrophic sites favoured smaller-sized phytoplankton groups (< 5 μm). Predictably, nutrient supply was suppressed during the El Niño event associated with the weakening of the EUC and deepening of the thermocline. Counterintuitively, nutrient levels were not significantly enhanced during the La Niña event likely because increased stratification between the mixed and deep water layers reduced entrainment, particularly at Eastern stations. Protist community composition was evaluated using 18S rRNA gene metabarcoding; the majority of detected OTUs were associated with upwelling conditions prevalent around the archipelago. Taxonomic variability reflected heterogeneous environmental conditions generated by the convergence of multiple ocean currents. These results highlight the dynamic interplay of physical and biological factors shaping primary productivity in the Galápagos marine ecosystem.</p>\n </div>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 7","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70146","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Galápagos Islands are a biodiversity hotspot, largely due to the Equatorial Undercurrent (EUC) which supplies nutrient-rich waters to the euphotic zone and supports enhanced levels of primary productivity performed by phytoplankton. Understanding phytoplankton responses to changing environmental conditions is crucial for regional conservation and management efforts. Research cruises conducted between 2014 and 2022, spanning a major El Niño event in 2015 and a La Niña event in 2022, observed varying oceanic conditions and diverse phytoplankton community composition. At most EUC-influenced stations, larger-sized phytoplankton groups (≥ 5 μm) were dominant while warmer, oligotrophic sites favoured smaller-sized phytoplankton groups (< 5 μm). Predictably, nutrient supply was suppressed during the El Niño event associated with the weakening of the EUC and deepening of the thermocline. Counterintuitively, nutrient levels were not significantly enhanced during the La Niña event likely because increased stratification between the mixed and deep water layers reduced entrainment, particularly at Eastern stations. Protist community composition was evaluated using 18S rRNA gene metabarcoding; the majority of detected OTUs were associated with upwelling conditions prevalent around the archipelago. Taxonomic variability reflected heterogeneous environmental conditions generated by the convergence of multiple ocean currents. These results highlight the dynamic interplay of physical and biological factors shaping primary productivity in the Galápagos marine ecosystem.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens