Flow Injection Inductively Coupled Plasma-Mass Spectrometry With Ultrasonic Nebulizer for the Quantification of Trace Elements in Seawater: An Innovative Method Targeting Cadmium, Cobalt, Lead, Manganese, Molybdenum, Tin, Uranium, and Vanadium
Giorgia Mattei, Clara Sette, Luca Lucentini, Enrico Veschetti
{"title":"Flow Injection Inductively Coupled Plasma-Mass Spectrometry With Ultrasonic Nebulizer for the Quantification of Trace Elements in Seawater: An Innovative Method Targeting Cadmium, Cobalt, Lead, Manganese, Molybdenum, Tin, Uranium, and Vanadium","authors":"Giorgia Mattei, Clara Sette, Luca Lucentini, Enrico Veschetti","doi":"10.1002/jssc.70228","DOIUrl":null,"url":null,"abstract":"<p>The accurate determination of trace elements in seawater is essential for environmental monitoring and the study of oceanic biogeochemical processes. However, traditional analytical techniques often face limitations due to the ultra-trace concentrations of metals and the high salinity of seawater, which introduces significant matrix effects. In this study, a novel flow injection—inductively coupled plasma mass spectrometry (FI-ICP-MS) method coupled with an ultrasonic nebulizer was developed and optimized for the direct quantification of cadmium, cobalt, lead, manganese, molybdenum, tin, uranium, and vanadium in seawater samples. The method was optimized by evaluating the effects of eluent concentration (0.05–0.20% HNO3, with 0.05% selected as the minimum effective value to ensure analyte stability, prevent precipitation, and minimize salt-related stress on the FI system), flow rate (0.4–1.0 mL/min), and sodium chloride matrix composition, ensuring minimal spectral interferences while maintaining high sensitivity. The selected operating conditions (0.05% HNO3 eluent at 0.70 mL/min with 103Rhodium and 193Iridium as internal standards) provided a robust analytical performance with low procedural limits of detection and quantification (ranging from 0.003 to 0.2 µg/L for LoDs and from 0.01 to 0.7 µg/L for LoQs) and excellent instrumental repeatability (1.2%–6.6%). The overall method was validated using the IAEA-443 seawater certified reference material, yielding recoveries between 104%–118% and procedural reproducibility ranging from 3.8% to 15%.</p><p>The optimized FI-ICP-MS method was applied to real seawater samples collected from two distinct Mediterranean transects: offshore Livorno, a site influenced by intense maritime and industrial activities, and Montecristo Island, a protected marine reserve with minimal anthropogenic impact. Results indicated no significant differences in trace metal concentrations between the two areas, suggesting that natural geochemical processes predominantly regulate elemental distributions. Most elements followed a conservative vertical distribution, with localized anomalies observed for manganese and cadmium. Furthermore, all measured cadmium and lead concentrations were well below the regulatory thresholds set by Directive 2013/39/EU, confirming compliance with environmental quality standards.</p>","PeriodicalId":17098,"journal":{"name":"Journal of separation science","volume":"48 7","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jssc.70228","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of separation science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jssc.70228","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The accurate determination of trace elements in seawater is essential for environmental monitoring and the study of oceanic biogeochemical processes. However, traditional analytical techniques often face limitations due to the ultra-trace concentrations of metals and the high salinity of seawater, which introduces significant matrix effects. In this study, a novel flow injection—inductively coupled plasma mass spectrometry (FI-ICP-MS) method coupled with an ultrasonic nebulizer was developed and optimized for the direct quantification of cadmium, cobalt, lead, manganese, molybdenum, tin, uranium, and vanadium in seawater samples. The method was optimized by evaluating the effects of eluent concentration (0.05–0.20% HNO3, with 0.05% selected as the minimum effective value to ensure analyte stability, prevent precipitation, and minimize salt-related stress on the FI system), flow rate (0.4–1.0 mL/min), and sodium chloride matrix composition, ensuring minimal spectral interferences while maintaining high sensitivity. The selected operating conditions (0.05% HNO3 eluent at 0.70 mL/min with 103Rhodium and 193Iridium as internal standards) provided a robust analytical performance with low procedural limits of detection and quantification (ranging from 0.003 to 0.2 µg/L for LoDs and from 0.01 to 0.7 µg/L for LoQs) and excellent instrumental repeatability (1.2%–6.6%). The overall method was validated using the IAEA-443 seawater certified reference material, yielding recoveries between 104%–118% and procedural reproducibility ranging from 3.8% to 15%.
The optimized FI-ICP-MS method was applied to real seawater samples collected from two distinct Mediterranean transects: offshore Livorno, a site influenced by intense maritime and industrial activities, and Montecristo Island, a protected marine reserve with minimal anthropogenic impact. Results indicated no significant differences in trace metal concentrations between the two areas, suggesting that natural geochemical processes predominantly regulate elemental distributions. Most elements followed a conservative vertical distribution, with localized anomalies observed for manganese and cadmium. Furthermore, all measured cadmium and lead concentrations were well below the regulatory thresholds set by Directive 2013/39/EU, confirming compliance with environmental quality standards.
期刊介绍:
The Journal of Separation Science (JSS) is the most comprehensive source in separation science, since it covers all areas of chromatographic and electrophoretic separation methods in theory and practice, both in the analytical and in the preparative mode, solid phase extraction, sample preparation, and related techniques. Manuscripts on methodological or instrumental developments, including detection aspects, in particular mass spectrometry, as well as on innovative applications will also be published. Manuscripts on hyphenation, automation, and miniaturization are particularly welcome. Pre- and post-separation facets of a total analysis may be covered as well as the underlying logic of the development or application of a method.