Cross-Tied Bypass Diodes in Small-Area High-Voltage PV Module for Nearly Ideal Partial Shading Performance in Urban Applications

IF 7.6 2区 材料科学 Q1 ENERGY & FUELS
Luthfan Fauzan, Min Ju Yun, Yeon Hyang Sim, Hyekyoung Choi, Dong Yoon Lee, Seung I. Cha
{"title":"Cross-Tied Bypass Diodes in Small-Area High-Voltage PV Module for Nearly Ideal Partial Shading Performance in Urban Applications","authors":"Luthfan Fauzan,&nbsp;Min Ju Yun,&nbsp;Yeon Hyang Sim,&nbsp;Hyekyoung Choi,&nbsp;Dong Yoon Lee,&nbsp;Seung I. Cha","doi":"10.1002/pip.3929","DOIUrl":null,"url":null,"abstract":"<p>Urgent demand for renewable energy coupled with rapid urbanization and limited space in urban environments requires innovative photovoltaic (PV) module designs that can efficiently address significant power loss under shading. This research proposes small-area high-voltage (SAHiV) modules equipped with cross-tied bypass diodes at the module level. SAHiV modules are pseudo-high-voltage, low-current principle that improve the efficiency and reliability of PV modules under various shading conditions. This study involves extensive simulations with experimental validation to compare the performance of conventional, shingled, and SAHiV PV modules under the influence of various bypass diode connection configurations generally used at the array scale. In particular, five diode configurations are intensively considered with total cross-tied (TCT) modifications of level arrays to determine the optimal configuration. In addition, we tested the power output using the methods of maximum power point tracking (MPPT) and fixed voltage under standard test conditions (V<sub>STC</sub>). The results show that SAHiV PV modules substantially outperform conventional and shingled PV modules for maintaining high power under various shading conditions with nearly ideal PV performance in some TCT connections. These findings emphasize the importance of optimizing bypass diode connections to improve PV system performance, safety, and lifetime and offer a practical solution to partial shading.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 8","pages":"874-889"},"PeriodicalIF":7.6000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3929","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3929","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Urgent demand for renewable energy coupled with rapid urbanization and limited space in urban environments requires innovative photovoltaic (PV) module designs that can efficiently address significant power loss under shading. This research proposes small-area high-voltage (SAHiV) modules equipped with cross-tied bypass diodes at the module level. SAHiV modules are pseudo-high-voltage, low-current principle that improve the efficiency and reliability of PV modules under various shading conditions. This study involves extensive simulations with experimental validation to compare the performance of conventional, shingled, and SAHiV PV modules under the influence of various bypass diode connection configurations generally used at the array scale. In particular, five diode configurations are intensively considered with total cross-tied (TCT) modifications of level arrays to determine the optimal configuration. In addition, we tested the power output using the methods of maximum power point tracking (MPPT) and fixed voltage under standard test conditions (VSTC). The results show that SAHiV PV modules substantially outperform conventional and shingled PV modules for maintaining high power under various shading conditions with nearly ideal PV performance in some TCT connections. These findings emphasize the importance of optimizing bypass diode connections to improve PV system performance, safety, and lifetime and offer a practical solution to partial shading.

Abstract Image

在城市应用中,小面积高压光伏组件中的交叉连接旁路二极管具有近乎理想的部分遮阳性能
对可再生能源的迫切需求,加上快速的城市化和城市环境中有限的空间,需要创新的光伏(PV)模块设计,可以有效地解决遮阳下的重大功率损失。本研究提出小面积高压(SAHiV)模组在模组层级上配备交叉连结旁路二极体。SAHiV模块采用伪高压小电流原理,提高了光伏组件在各种遮阳条件下的效率和可靠性。本研究包括大量的模拟和实验验证,以比较在阵列规模上通常使用的各种旁路二极管连接配置的影响下,传统、瓦式和SAHiV光伏模块的性能。特别是,五个二极管的配置被集中考虑与电平阵列的总交叉(TCT)修改,以确定最佳配置。此外,我们使用最大功率点跟踪(MPPT)和标准测试条件下固定电压(VSTC)的方法测试了输出功率。结果表明,SAHiV光伏组件在各种遮阳条件下保持高功率的性能大大优于传统光伏组件和瓦式光伏组件,在一些TCT连接中具有接近理想的光伏性能。这些发现强调了优化旁路二极管连接对提高光伏系统性能、安全性和使用寿命的重要性,并为部分遮阳提供了实用的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Photovoltaics
Progress in Photovoltaics 工程技术-能源与燃料
CiteScore
18.10
自引率
7.50%
发文量
130
审稿时长
5.4 months
期刊介绍: Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers. The key criterion is that all papers submitted should report substantial “progress” in photovoltaics. Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables. Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信