The Impact of Memory Effects on Lymphatic Filariasis Transmission Using Incidence Data From Ghana

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Fredrick A. Wireko, Rebecca Awerigiya, Isaac K. Adu, Joshua N. Martey, Bernard O. Bainson, Joshua Kiddy K. Asamoah
{"title":"The Impact of Memory Effects on Lymphatic Filariasis Transmission Using Incidence Data From Ghana","authors":"Fredrick A. Wireko,&nbsp;Rebecca Awerigiya,&nbsp;Isaac K. Adu,&nbsp;Joshua N. Martey,&nbsp;Bernard O. Bainson,&nbsp;Joshua Kiddy K. Asamoah","doi":"10.1002/eng2.70288","DOIUrl":null,"url":null,"abstract":"<p>Lymphatic filariasis is a neglected tropical disease caused by a parasitic worm transmitted to humans by a mosquito bite. In this study, a mathematical model is developed using the Caputo fractional operator. The model also examined the influence of the rate of awareness of the disease and the mass administration of drugs on their contribution to mitigating the spread of the disease during an outbreak. We compared the model with lymphatic filariasis-infected cases in Ghana from 2010 to 2021. Using the Hyers-Ulam and Hyers-Ulam-Rassias stability criterion, we theoretically showed that the proposed model is stable. The basic reproduction number calculated based on the parameters obtained is <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>ℛ</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <mn>1</mn>\n <mo>.</mo>\n <mn>5746</mn>\n </mrow>\n <annotation>$$ {\\mathcal{R}}_0=1.5746 $$</annotation>\n </semantics></math> with a normalized mean square error of 0.0198. Through sensitivity index analysis and numerical simulations, we noticed that the mosquito bite rate <span></span><math>\n <semantics>\n <mrow>\n <mi>β</mi>\n </mrow>\n <annotation>$$ \\beta $$</annotation>\n </semantics></math> directly contributes to the spread of the disease. In contrast, the rate of awareness of the disease will help mitigate the spread of the disease during an outbreak.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 7","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70288","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Lymphatic filariasis is a neglected tropical disease caused by a parasitic worm transmitted to humans by a mosquito bite. In this study, a mathematical model is developed using the Caputo fractional operator. The model also examined the influence of the rate of awareness of the disease and the mass administration of drugs on their contribution to mitigating the spread of the disease during an outbreak. We compared the model with lymphatic filariasis-infected cases in Ghana from 2010 to 2021. Using the Hyers-Ulam and Hyers-Ulam-Rassias stability criterion, we theoretically showed that the proposed model is stable. The basic reproduction number calculated based on the parameters obtained is 0 = 1 . 5746 $$ {\mathcal{R}}_0=1.5746 $$ with a normalized mean square error of 0.0198. Through sensitivity index analysis and numerical simulations, we noticed that the mosquito bite rate β $$ \beta $$ directly contributes to the spread of the disease. In contrast, the rate of awareness of the disease will help mitigate the spread of the disease during an outbreak.

Abstract Image

使用加纳发病率数据研究记忆效应对淋巴丝虫病传播的影响
淋巴丝虫病是一种被忽视的热带疾病,由蚊子叮咬传播给人类的寄生虫引起。在本研究中,利用卡普托分数算子建立了一个数学模型。该模型还审查了疾病知晓率和大规模药物管理对在疾病爆发期间减轻疾病传播的贡献的影响。我们将该模型与2010年至2021年加纳淋巴丝虫病感染病例进行了比较。利用Hyers-Ulam和Hyers-Ulam- rassias稳定性判据,从理论上证明了所提出的模型是稳定的。根据所得到的参数计算出的基本再现数为∑0 = 1。5746 $$ {\mathcal{R}}_0=1.5746 $$归一化均方误差为0.0198。通过敏感性指数分析和数值模拟,发现蚊虫叮咬率β $$ \beta $$直接影响疾病的传播。相反,该病的认知率将有助于在疫情期间减轻该病的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信