Jerome Avellaneda, Duarte Candeias, Ana da Rosa Soares, Edgar R. Gomes, Nuno Miguel Luis, Frank Schnorrer
{"title":"Microtubules coordinate mitochondria transport with myofibril morphogenesis during muscle development","authors":"Jerome Avellaneda, Duarte Candeias, Ana da Rosa Soares, Edgar R. Gomes, Nuno Miguel Luis, Frank Schnorrer","doi":"10.1016/j.devcel.2025.06.033","DOIUrl":null,"url":null,"abstract":"Muscle cells contain numerous energy-producing mitochondria and contractile myofibrils, whose myosin motors need ATP to generate force. Thus, myofibrils and mitochondria are in intimate contact in mature muscles. However, how their morphogenesis is coordinated during development remains largely unknown. Here, we used <em>in vivo</em> imaging to investigate myofibril and mitochondria network dynamics in developing <em>Drosophila</em> flight muscles. We found that mitochondria intercalate from the surface of actin bundles to their interior, and concomitantly, actin filaments condense to individual myofibrils. This ensures that mitochondria locate in proximity to every myofibril. Notably, antiparallel microtubules bundle with the assembling myofibrils, suggesting a key role in myofibril orientation. Indeed, microtubule severing affects myofibril orientation, whereas kinesin knockdown specifically blocks mitochondria intercalation. Importantly, mitochondria intercalation and their kinesin-dependent microtubule-based transport are conserved in mammalian muscle. Together, these data identify a key role for microtubules in coordinating mitochondria and myofibril morphogenesis to build functional muscles.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"57 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2025.06.033","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Muscle cells contain numerous energy-producing mitochondria and contractile myofibrils, whose myosin motors need ATP to generate force. Thus, myofibrils and mitochondria are in intimate contact in mature muscles. However, how their morphogenesis is coordinated during development remains largely unknown. Here, we used in vivo imaging to investigate myofibril and mitochondria network dynamics in developing Drosophila flight muscles. We found that mitochondria intercalate from the surface of actin bundles to their interior, and concomitantly, actin filaments condense to individual myofibrils. This ensures that mitochondria locate in proximity to every myofibril. Notably, antiparallel microtubules bundle with the assembling myofibrils, suggesting a key role in myofibril orientation. Indeed, microtubule severing affects myofibril orientation, whereas kinesin knockdown specifically blocks mitochondria intercalation. Importantly, mitochondria intercalation and their kinesin-dependent microtubule-based transport are conserved in mammalian muscle. Together, these data identify a key role for microtubules in coordinating mitochondria and myofibril morphogenesis to build functional muscles.
期刊介绍:
Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.