Gong Li, Ang Gao, Xin-Yi Lu, Tian-Hong Zhou, Shi-Ying Zhou, Li-Jua n Xia, Lei Wan, Yu-Zhang He, Xin-Yi Chen, Wen-Ying Guo, Jia-Min Zheng, Hao Ren, Sheng-Qiu Tang, Xiao-Ping Liao, Liang Chen, Jian Sun
{"title":"Targeting Plasmid Conjugation with Cinnamic Acid: A Novel Approach to Combat Antibiotic Resistance","authors":"Gong Li, Ang Gao, Xin-Yi Lu, Tian-Hong Zhou, Shi-Ying Zhou, Li-Jua n Xia, Lei Wan, Yu-Zhang He, Xin-Yi Chen, Wen-Ying Guo, Jia-Min Zheng, Hao Ren, Sheng-Qiu Tang, Xiao-Ping Liao, Liang Chen, Jian Sun","doi":"10.1016/j.eng.2025.06.040","DOIUrl":null,"url":null,"abstract":"The global spread of antibiotic resistance genes (ARGs) continues to worsen, with plasmid-mediated conjugation serving as a major transmission route. Although developing conjugation inhibitors to block this process is a promising strategy, current options are limited by toxicity and poor <em>in vivo</em> efficacy. This study evaluated the effect of cinnamic acid (CA; 3-phenyl-2-acrylic acid), a widely abundant food additive found in cinnamon, on plasmid conjugation. CA effectively inhibited the conjugation of various resistance plasmids <em>in vitro</em>, <em>ex vivo</em>, and <em>in vivo</em>. Transcriptomic analysis indicated that CA disrupts the electron transport chain (ETC) and proton motive force (PMF) by inhibiting the tricarboxylic acid (TCA) cycle, leading to reduced intracellular adenosine triphosphate (ATP)—a critical factor for plasmid conjugation. Biocompatibility assays showed that CA maintains high biosafety while preserving gut microbiota homeostasis. Therefore, these findings provide new insights into ARG inhibition and highlight the potential of CA as a novel strategy to combat the global rise in antibiotic-resistant infections.","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"16 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.eng.2025.06.040","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The global spread of antibiotic resistance genes (ARGs) continues to worsen, with plasmid-mediated conjugation serving as a major transmission route. Although developing conjugation inhibitors to block this process is a promising strategy, current options are limited by toxicity and poor in vivo efficacy. This study evaluated the effect of cinnamic acid (CA; 3-phenyl-2-acrylic acid), a widely abundant food additive found in cinnamon, on plasmid conjugation. CA effectively inhibited the conjugation of various resistance plasmids in vitro, ex vivo, and in vivo. Transcriptomic analysis indicated that CA disrupts the electron transport chain (ETC) and proton motive force (PMF) by inhibiting the tricarboxylic acid (TCA) cycle, leading to reduced intracellular adenosine triphosphate (ATP)—a critical factor for plasmid conjugation. Biocompatibility assays showed that CA maintains high biosafety while preserving gut microbiota homeostasis. Therefore, these findings provide new insights into ARG inhibition and highlight the potential of CA as a novel strategy to combat the global rise in antibiotic-resistant infections.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.