{"title":"Micro-meso-macroporous channels finely tailored for highly efficient moisture energy harvesting","authors":"Chenxing Wang, Peng Duan, Yinpeng Huang, Xulei Lu, Chunqiao Fu, Yong Zhang, Linmao Qian, Tingting Yang","doi":"10.1038/s41467-025-61898-5","DOIUrl":null,"url":null,"abstract":"<p>Water and ion channels are crucial for moisture energy harvesting, requiring precise pore design for mass transfer control. However, the key challenge lies in managing the localized assembly process of membrane materials to arrange them orderly, forming confined mass transfer pathways and stable solid-liquid interfaces. This is essential for exploring the interrelationship among channel morphological characteristics, mass transfer dynamics, and device power generation performance. This work proposes the use of freeze-assisted salting-out to meticulously construct hydrogel bilayer membranes with micro-meso-macroporous oriented channels and asymmetric charge characteristics. The produced polyvinyl alcohol/MXene hydrogel devices achieved a <i>V</i><sub>oc</sub> <i>× J</i><sub>sc</sub> of 11.4 μW cm<sup>−2</sup> (pure hydrovoltaic effect) and 146 μW cm<sup>−2</sup> (with active electrodes) at 25 °C, 45%RH, surpassing most moisture-based generators. In addition, the power generation performance is highly consistent with the Hofmeister series, with stronger salting-out effect to obtain more micropores and mesopores, and ice crystal growth can help obtain ordered macropores. It has faster water transport rate, higher ionic conductivity, better ionic selectivity, and stronger channel stability than traditional moisture-based power generation membranes. This relationship between pore tuning from salt ions and device power generation performance provides a design basis for the development of high-performance moisture-based power generators.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"11 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61898-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Water and ion channels are crucial for moisture energy harvesting, requiring precise pore design for mass transfer control. However, the key challenge lies in managing the localized assembly process of membrane materials to arrange them orderly, forming confined mass transfer pathways and stable solid-liquid interfaces. This is essential for exploring the interrelationship among channel morphological characteristics, mass transfer dynamics, and device power generation performance. This work proposes the use of freeze-assisted salting-out to meticulously construct hydrogel bilayer membranes with micro-meso-macroporous oriented channels and asymmetric charge characteristics. The produced polyvinyl alcohol/MXene hydrogel devices achieved a Voc× Jsc of 11.4 μW cm−2 (pure hydrovoltaic effect) and 146 μW cm−2 (with active electrodes) at 25 °C, 45%RH, surpassing most moisture-based generators. In addition, the power generation performance is highly consistent with the Hofmeister series, with stronger salting-out effect to obtain more micropores and mesopores, and ice crystal growth can help obtain ordered macropores. It has faster water transport rate, higher ionic conductivity, better ionic selectivity, and stronger channel stability than traditional moisture-based power generation membranes. This relationship between pore tuning from salt ions and device power generation performance provides a design basis for the development of high-performance moisture-based power generators.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.