Influence of Excitation Pulse Duration on the Efficiency of Upconversion Nanoparticle-Based FRET

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-07-17 DOI:10.1039/d5nr01779c
Alejandro Casillas-Rubio, khouloud Hamraoui, Diego Méndez González, Marco Laurenti, Jorge Rubio Retama, Oscar G. Calderon, Sonia Melle
{"title":"Influence of Excitation Pulse Duration on the Efficiency of Upconversion Nanoparticle-Based FRET","authors":"Alejandro Casillas-Rubio, khouloud Hamraoui, Diego Méndez González, Marco Laurenti, Jorge Rubio Retama, Oscar G. Calderon, Sonia Melle","doi":"10.1039/d5nr01779c","DOIUrl":null,"url":null,"abstract":"Accurate and reliable quantification of Förster Resonance Energy Transfer (FRET) is essential for the development of sensitive upconverting nanoparticle (UCNP)-based biosensors. While lifetime-based FRET measurements are generally considered robust, excitation conditions can significantly bias observed efficiencies. Here, we investigate how excitation pulse width and power influence lifetimederived FRET efficiency in core-shell β-NaYF4:Yb0.2@NaYF4:Yb0.2,Er0.02 UCNPs functionalized with Cy3 dyes. Time-resolved upconversion luminescence (UCL) measurements reveal that apparent FRET efficiencies decrease with increasing excitation pulse duration and power. These variations stem from excitation-induced changes in the UCL lifetime, arising from the complex dynamics that accompany the upconversion emission process. A dynamic rate equation model reproduces the experimental trends, confirming that excitation parameters alter emissive state kinetics and thus bias lifetime-based FRET measurements. Our findings identify excitation conditions as a hidden variable in UCNP-FRET experiments and underscore the need for standardized measurement protocols.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"95 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nr01779c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate and reliable quantification of Förster Resonance Energy Transfer (FRET) is essential for the development of sensitive upconverting nanoparticle (UCNP)-based biosensors. While lifetime-based FRET measurements are generally considered robust, excitation conditions can significantly bias observed efficiencies. Here, we investigate how excitation pulse width and power influence lifetimederived FRET efficiency in core-shell β-NaYF4:Yb0.2@NaYF4:Yb0.2,Er0.02 UCNPs functionalized with Cy3 dyes. Time-resolved upconversion luminescence (UCL) measurements reveal that apparent FRET efficiencies decrease with increasing excitation pulse duration and power. These variations stem from excitation-induced changes in the UCL lifetime, arising from the complex dynamics that accompany the upconversion emission process. A dynamic rate equation model reproduces the experimental trends, confirming that excitation parameters alter emissive state kinetics and thus bias lifetime-based FRET measurements. Our findings identify excitation conditions as a hidden variable in UCNP-FRET experiments and underscore the need for standardized measurement protocols.
激发脉冲持续时间对上转换纳米粒子FRET效率的影响
准确可靠的Förster共振能量传递(FRET)的定量对于开发灵敏的上转换纳米颗粒(UCNP)生物传感器至关重要。虽然基于寿命的FRET测量通常被认为是稳健的,但激励条件会显著影响观察到的效率。在这里,我们研究了激发脉冲宽度和功率如何影响用Cy3染料功能化的核壳β-NaYF4:Yb0.2@NaYF4:Yb0.2,Er0.02 UCNPs的寿命衍生FRET效率。时间分辨上转换发光(UCL)的测量结果表明,随着激发脉冲持续时间和功率的增加,FRET的表观效率降低。这些变化源于激发引起的UCL寿命的变化,这是由伴随上转换发射过程的复杂动力学引起的。动态速率方程模型再现了实验趋势,证实了激发参数改变了发射态动力学,从而改变了基于寿命的FRET测量。我们的研究结果确定了激励条件是UCNP-FRET实验中的一个隐藏变量,并强调了标准化测量方案的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信