Fangying Shi, Huajun Fang, Shulan Cheng, Yifan Guo, Hui Wang, Long Chen, Haiguang Pu, Bingqian Liu
{"title":"Cadmium accumulation suppresses rice nitrogen use efficiency by inhibiting rhizosphere nitrification and promoting nitrate reduction","authors":"Fangying Shi, Huajun Fang, Shulan Cheng, Yifan Guo, Hui Wang, Long Chen, Haiguang Pu, Bingqian Liu","doi":"10.1016/j.jhazmat.2025.139298","DOIUrl":null,"url":null,"abstract":"Cadmium (Cd) pollution significantly disrupts paddy soil nitrogen (N) availability and impairs rice nitrogen use efficiency (NUE). However, most existing studies rely on microcosm or pot experiments, with limited field-based manipulative studies involving Cd addition. The regulatory mechanisms by which N transformation processes influence rice N utilization under Cd stress remain poorly understood. In this study, a field experiment incorporating multiple levels of Cd addition was conducted to address this gap. Plant traits, nutrient content, and microbial community characteristics in rhizosphere and bulk soils were examined through soil chemical analysis, metagenomic sequencing, and bioinformatics approaches. The results demonstrated that microbial communities, soil N transformation potential, and rice NUE responded to Cd addition in a dose-dependent manner, with rhizosphere soils exhibiting greater sensitivity than bulk soils. Cd addition reduced dissolved organic carbon (DOC), NH₄⁺-N, and NO₃⁻-N in rhizosphere soil, while increasing total and available phosphorus (P) contents in both rhizosphere and bulk soils. Although Cd addition enhanced aboveground biomass and total N uptake, it led to a decline in plant N concentration and NUE. Moreover, Cd accumulation markedly suppressed the abundance of nitrification genes while promoting genes involved in dissimilatory nitrate reduction to ammonium (DNRA) and denitrification. Overall, Cd stress altered microbial community structure and soil N and P availability, thereby impairing rice N uptake and NUE. These findings suggest that acute Cd exposure rapidly disrupts microbial ecology, decouples the soil N cycle, and reduces N supply potential of paddy soils and rice NUE, ultimately threatening agroecosystem stability in southern China. These impacts warrant greater consideration in future farmland management strategies.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"3 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.139298","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cadmium (Cd) pollution significantly disrupts paddy soil nitrogen (N) availability and impairs rice nitrogen use efficiency (NUE). However, most existing studies rely on microcosm or pot experiments, with limited field-based manipulative studies involving Cd addition. The regulatory mechanisms by which N transformation processes influence rice N utilization under Cd stress remain poorly understood. In this study, a field experiment incorporating multiple levels of Cd addition was conducted to address this gap. Plant traits, nutrient content, and microbial community characteristics in rhizosphere and bulk soils were examined through soil chemical analysis, metagenomic sequencing, and bioinformatics approaches. The results demonstrated that microbial communities, soil N transformation potential, and rice NUE responded to Cd addition in a dose-dependent manner, with rhizosphere soils exhibiting greater sensitivity than bulk soils. Cd addition reduced dissolved organic carbon (DOC), NH₄⁺-N, and NO₃⁻-N in rhizosphere soil, while increasing total and available phosphorus (P) contents in both rhizosphere and bulk soils. Although Cd addition enhanced aboveground biomass and total N uptake, it led to a decline in plant N concentration and NUE. Moreover, Cd accumulation markedly suppressed the abundance of nitrification genes while promoting genes involved in dissimilatory nitrate reduction to ammonium (DNRA) and denitrification. Overall, Cd stress altered microbial community structure and soil N and P availability, thereby impairing rice N uptake and NUE. These findings suggest that acute Cd exposure rapidly disrupts microbial ecology, decouples the soil N cycle, and reduces N supply potential of paddy soils and rice NUE, ultimately threatening agroecosystem stability in southern China. These impacts warrant greater consideration in future farmland management strategies.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.