Leveraging satellite observations and machine learning for underwater sound speed estimation.

Madusanka Madiligama, Zheguang Zou, Likun Zhang
{"title":"Leveraging satellite observations and machine learning for underwater sound speed estimation.","authors":"Madusanka Madiligama, Zheguang Zou, Likun Zhang","doi":"10.1038/s44172-025-00459-6","DOIUrl":null,"url":null,"abstract":"<p><p>Underwater acoustics plays a vital role in climate science, marine ecosystems, environmental monitoring, mineral exploration, and oceanography. Accurate underwater sound speed data is crucial for acoustic modeling and applications such as sonar systems. However, limited data and computational constraints hinder real-time, high-resolution mapping of three-dimensional sound speed fields. We present an integrated approach that combines remote sensing, machine learning, and underwater acoustics to estimate sound speed across vast ocean regions. By analyzing sea surface temperature and salinity from satellite observations, we use machine learning to rapidly and accurately predict 3D underwater sound speed. Incorporating spatial and temporal variables enables detailed, real-time mapping. Validation against in-situ profiles and Argo float data confirms the model's accuracy across seasons, regions, and timeframes. This approach advances underwater sound speed prediction beyond traditional limits. Acoustic propagation modeling further demonstrates the potential of our model for applications in underwater detection, communication, and noise analysis.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"126"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12263853/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00459-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Underwater acoustics plays a vital role in climate science, marine ecosystems, environmental monitoring, mineral exploration, and oceanography. Accurate underwater sound speed data is crucial for acoustic modeling and applications such as sonar systems. However, limited data and computational constraints hinder real-time, high-resolution mapping of three-dimensional sound speed fields. We present an integrated approach that combines remote sensing, machine learning, and underwater acoustics to estimate sound speed across vast ocean regions. By analyzing sea surface temperature and salinity from satellite observations, we use machine learning to rapidly and accurately predict 3D underwater sound speed. Incorporating spatial and temporal variables enables detailed, real-time mapping. Validation against in-situ profiles and Argo float data confirms the model's accuracy across seasons, regions, and timeframes. This approach advances underwater sound speed prediction beyond traditional limits. Acoustic propagation modeling further demonstrates the potential of our model for applications in underwater detection, communication, and noise analysis.

利用卫星观测和机器学习进行水下声速估计。
水声在气候科学、海洋生态系统、环境监测、矿产勘探和海洋学等领域发挥着重要作用。准确的水声速度数据对于声学建模和声纳系统等应用至关重要。然而,有限的数据和计算限制阻碍了三维声速场的实时、高分辨率制图。我们提出了一种结合遥感、机器学习和水下声学的综合方法来估计广阔海洋区域的声速。通过分析卫星观测的海面温度和盐度,我们利用机器学习快速准确地预测3D水下声速。结合空间和时间变量可以实现详细的实时绘图。对现场剖面和Argo浮标数据的验证证实了模型在季节、地区和时间范围内的准确性。这种方法使水下声速预测超越了传统的限制。声学传播建模进一步证明了我们的模型在水下探测、通信和噪声分析方面的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信