Estimation and variable selection for semiparametric transformation models with length-biased survival data.

IF 1 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Jih-Chang Yu, Yu-Jen Cheng
{"title":"Estimation and variable selection for semiparametric transformation models with length-biased survival data.","authors":"Jih-Chang Yu, Yu-Jen Cheng","doi":"10.1007/s10985-025-09661-2","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we investigate estimation and variable selection for semiparametric transformation models with length-biased survival data-a special case of left truncation commonly encountered in the social sciences and cancer prevention trials. To correct for sampling bias, conventional methods such as conditional likelihood, martingale estimating equations, and composite likelihood have been proposed. However, these methods may be less efficient due to their reliance on only partial information from the full likelihood. In contrast, we adopt a full-likelihood approach under the semiparametric transformation model and propose a unified and more efficient nonparametric maximum likelihood estimator (NPMLE). To perform variable selection, we incorporate an adaptive least absolute shrinkage and selection operator (ALASSO) penalty into the full likelihood. We show that when the NPMLE is used as the initial value, the resulting one-step ALASSO estimator-offering a simplified version of the Newton-Raphson method-achieves oracle properties. Theoretical properties of the proposed methods are established using empirical process techniques. The performance of the methods is evaluated through simulation studies and illustrated with a real data application.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-025-09661-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigate estimation and variable selection for semiparametric transformation models with length-biased survival data-a special case of left truncation commonly encountered in the social sciences and cancer prevention trials. To correct for sampling bias, conventional methods such as conditional likelihood, martingale estimating equations, and composite likelihood have been proposed. However, these methods may be less efficient due to their reliance on only partial information from the full likelihood. In contrast, we adopt a full-likelihood approach under the semiparametric transformation model and propose a unified and more efficient nonparametric maximum likelihood estimator (NPMLE). To perform variable selection, we incorporate an adaptive least absolute shrinkage and selection operator (ALASSO) penalty into the full likelihood. We show that when the NPMLE is used as the initial value, the resulting one-step ALASSO estimator-offering a simplified version of the Newton-Raphson method-achieves oracle properties. Theoretical properties of the proposed methods are established using empirical process techniques. The performance of the methods is evaluated through simulation studies and illustrated with a real data application.

具有长度偏倚生存数据的半参数转换模型的估计和变量选择。
在这项研究中,我们研究了具有长度偏倚生存数据的半参数转换模型的估计和变量选择-这是社会科学和癌症预防试验中常见的左截断的特殊情况。为了纠正抽样偏差,提出了条件似然、鞅估计方程和复合似然等传统方法。然而,这些方法可能效率较低,因为它们只依赖于全似然的部分信息。相反,我们在半参数变换模型下采用全似然方法,提出了一种统一的、更有效的非参数极大似然估计(NPMLE)。为了执行变量选择,我们将自适应最小绝对收缩和选择算子(ALASSO)惩罚纳入到全似然中。我们表明,当使用NPMLE作为初始值时,得到的一步ALASSO估计器——提供了牛顿-拉夫森方法的简化版本——实现了oracle属性。所提出的方法的理论性质是利用经验工艺技术建立的。通过仿真研究对方法的性能进行了评价,并通过实际数据应用进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信