{"title":"From Columns to Networks: Search toward the Elusive Single Gyroid with <i>π</i>-Shaped Polyphilic Liquid Crystalline Block Molecules.","authors":"Silvio Poppe, Changlong Chen, Yu Cao, Feng Liu, Carsten Tschierske","doi":"10.1002/smsc.202500157","DOIUrl":null,"url":null,"abstract":"<p><p>Polyphilic block molecules form a wide range of new liquid crystalline (LC) phases with complex morphologies on a nanometer scale. Herein the soft self-assembly of <i>π</i>-shaped <i>p</i>-terphenyl-based bolapolyphiles having two adjacent aliphatic side chains at the central benzene ring (catechol dialkyl ethers) is reported with a focus on the design of single-network structures. Depending on the length of the side chains and temperature a series of polygonal honeycombs, a zeolite-like LC, a lamellar phase, and two segmented network phases with cubic symmetry is found. In these networks self-assembled glycerol spheres, forming the junctions, are interconnected by coaxial <i>p</i>-terphenyl bundles. Upon side-chain elongation, a double-gyroid phase with three-way junctions is replaced by the single diamond having a four-way junction network. However, the single gyroid supposed to be formed by further side-chain expansion could not be observed; instead, the LC self-assembly breaks down completely. It is hypothesized that the formation of single-network phases by bottom-up self-assembly in soft matter systems requires a minimum junction valence of at least 4 to stabilize the networks.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 7","pages":"2500157"},"PeriodicalIF":8.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12257908/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202500157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Polyphilic block molecules form a wide range of new liquid crystalline (LC) phases with complex morphologies on a nanometer scale. Herein the soft self-assembly of π-shaped p-terphenyl-based bolapolyphiles having two adjacent aliphatic side chains at the central benzene ring (catechol dialkyl ethers) is reported with a focus on the design of single-network structures. Depending on the length of the side chains and temperature a series of polygonal honeycombs, a zeolite-like LC, a lamellar phase, and two segmented network phases with cubic symmetry is found. In these networks self-assembled glycerol spheres, forming the junctions, are interconnected by coaxial p-terphenyl bundles. Upon side-chain elongation, a double-gyroid phase with three-way junctions is replaced by the single diamond having a four-way junction network. However, the single gyroid supposed to be formed by further side-chain expansion could not be observed; instead, the LC self-assembly breaks down completely. It is hypothesized that the formation of single-network phases by bottom-up self-assembly in soft matter systems requires a minimum junction valence of at least 4 to stabilize the networks.
期刊介绍:
Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.