High-quality epitaxial, homogeneous anatase thin films by on-site controlled hydrolysis on LaAlO3 substrates and characterization.

IF 6.9 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Science and Technology of Advanced Materials Pub Date : 2025-07-14 eCollection Date: 2025-01-01 DOI:10.1080/14686996.2025.2518747
Sudu Hakuruge Dilan Priyankara Wijekoon, Kosuke Ono, Masaru Shimomura, Takahiko Kawaguchi, Naonori Sakamoto, Naoki Wakiya
{"title":"High-quality epitaxial, homogeneous anatase thin films by on-site controlled hydrolysis on LaAlO<sub>3</sub> substrates and characterization.","authors":"Sudu Hakuruge Dilan Priyankara Wijekoon, Kosuke Ono, Masaru Shimomura, Takahiko Kawaguchi, Naonori Sakamoto, Naoki Wakiya","doi":"10.1080/14686996.2025.2518747","DOIUrl":null,"url":null,"abstract":"<p><p>The anatase form of TiO₂ is a widely studied material due to its broad range of applications. Epitaxial anatase thin films have attracted significant attention because of their enhanced electrical and optical properties. However, fabricating anatase thin films remains challenging due to their metastability and the need for highly sophisticated fabrication techniques. On-site controlled hydrolysis is a simple, cost-effective, and rapid method for producing smooth, compact thin films on various surfaces. In this study, we demonstrate a straightforward approach to fabricating highly oriented epitaxial anatase thin films on LaAlO₃ substrates using different solvent mixtures. The epitaxial orientation and film quality were analyzed using X-ray diffraction pole figures and rocking curves, while surface morphology was characterized by Scanning electron microscopy and atomic force microscopy. Our results indicate that thin film quality and morphology are primarily influenced by the annealing temperature rather than the choice of solvent or titanium precursor, confirming the feasibility of a scalable, low-cost epitaxial fabrication technique for anatase thin films.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2518747"},"PeriodicalIF":6.9000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12261510/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2025.2518747","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The anatase form of TiO₂ is a widely studied material due to its broad range of applications. Epitaxial anatase thin films have attracted significant attention because of their enhanced electrical and optical properties. However, fabricating anatase thin films remains challenging due to their metastability and the need for highly sophisticated fabrication techniques. On-site controlled hydrolysis is a simple, cost-effective, and rapid method for producing smooth, compact thin films on various surfaces. In this study, we demonstrate a straightforward approach to fabricating highly oriented epitaxial anatase thin films on LaAlO₃ substrates using different solvent mixtures. The epitaxial orientation and film quality were analyzed using X-ray diffraction pole figures and rocking curves, while surface morphology was characterized by Scanning electron microscopy and atomic force microscopy. Our results indicate that thin film quality and morphology are primarily influenced by the annealing temperature rather than the choice of solvent or titanium precursor, confirming the feasibility of a scalable, low-cost epitaxial fabrication technique for anatase thin films.

在LaAlO3衬底上控制水解制备高质量外延、均匀锐钛矿薄膜及其表征。
锐钛矿形式的二氧化钛由于其广泛的应用而成为一种被广泛研究的材料。外延锐钛矿薄膜因其优异的电学和光学性能而备受关注。然而,由于锐钛矿薄膜的亚稳性和对高度复杂的制造技术的需求,制造锐钛矿薄膜仍然具有挑战性。现场控制水解是一种简单、经济、快速的方法,用于在各种表面上生产光滑、致密的薄膜。在这项研究中,我们展示了一种使用不同溶剂混合物在LaAlO₃衬底上制造高取向外延锐钛矿薄膜的直接方法。利用x射线衍射极点图和摇摆曲线分析了外延取向和薄膜质量,并用扫描电镜和原子力显微镜对表面形貌进行了表征。我们的研究结果表明,薄膜的质量和形貌主要受退火温度的影响,而不是溶剂或钛前驱体的选择,这证实了一种可扩展的、低成本的锐钛矿薄膜外延制造技术的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science and Technology of Advanced Materials
Science and Technology of Advanced Materials 工程技术-材料科学:综合
CiteScore
10.60
自引率
3.60%
发文量
52
审稿时长
4.8 months
期刊介绍: Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering. The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications. Of particular interest are research papers on the following topics: Materials informatics and materials genomics Materials for 3D printing and additive manufacturing Nanostructured/nanoscale materials and nanodevices Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications Materials for energy and environment, next-generation photovoltaics, and green technologies Advanced structural materials, materials for extreme conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信