Distinguishing symptomatic and asymptomatic trigeminal nerves through radiomics and deep learning: A microstructural study in idiopathic TN patients and asymptomatic control group.
Ferhat Cüce, Gokalp Tulum, Ömer Karadaş, Muhammet İkbal Işik, Merve Dur İnce, Sajjad Nematzadeh, Marziye Jalili, Niray Baş, Berza Özcan, Onur Osman
{"title":"Distinguishing symptomatic and asymptomatic trigeminal nerves through radiomics and deep learning: A microstructural study in idiopathic TN patients and asymptomatic control group.","authors":"Ferhat Cüce, Gokalp Tulum, Ömer Karadaş, Muhammet İkbal Işik, Merve Dur İnce, Sajjad Nematzadeh, Marziye Jalili, Niray Baş, Berza Özcan, Onur Osman","doi":"10.1007/s00234-025-03691-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The relationship between mild neurovascular conflict (NVC) and trigeminal neuralgia (TN) remains ill-defined, especially as mild NVC is often seen in asymptomatic population without any facial pain. We aim to analyze the trigeminal nerve microstructure using artificial intelligence (AI) to distinguish symptomatic and asymptomatic nerves between idiopathic TN (iTN) and the asymptomatic control group with incidental grade‑1 NVC.</p><p><strong>Methods: </strong>Seventy-eight symptomatic trigeminal nerves with grade-1 NVC in iTN patients, and an asymptomatic control group consisting of Bell's palsy patients free from facial pain (91 grade-1 NVC and 91 grade-0 NVC), were included in the study. Three hundred seventy-eight radiomic features were extracted from the original MRI images and processed with Laplacian-of-Gaussian filters. The dataset was split into 80% training/validation and 20% testing. Nested cross-validation was employed on the training/validation set for feature selection and model optimization. Furthermore, using the same pipeline approach, two customized deep learning models, Dense Atrous Spatial Pyramid Pooling (ASPP) -201 and MobileASPPV2, were classified using the same pipeline approach, incorporating ASPP blocks.</p><p><strong>Results: </strong>Performance was assessed over ten and five runs for radiomics-based and deep learning-based models. Subspace Discriminant Ensemble Learning (SDEL) attained an accuracy of 78.8%±7.13%, Support Vector Machines (SVM) reached 74.8%±9.2%, and K-nearest neighbors (KNN) achieved 79%±6.55%. Meanwhile, DenseASPP-201 recorded an accuracy of 82.0 ± 8.4%, and MobileASPPV2 achieved 73.2 ± 5.59%.</p><p><strong>Conclusion: </strong>The AI effectively distinguished symptomatic and asymptomatic nerves with grade‑1 NVC. Further studies are required to fully elucidate the impact of vascular and nonvascular etiologies that may lead to iTN.</p>","PeriodicalId":19422,"journal":{"name":"Neuroradiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroradiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00234-025-03691-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The relationship between mild neurovascular conflict (NVC) and trigeminal neuralgia (TN) remains ill-defined, especially as mild NVC is often seen in asymptomatic population without any facial pain. We aim to analyze the trigeminal nerve microstructure using artificial intelligence (AI) to distinguish symptomatic and asymptomatic nerves between idiopathic TN (iTN) and the asymptomatic control group with incidental grade‑1 NVC.
Methods: Seventy-eight symptomatic trigeminal nerves with grade-1 NVC in iTN patients, and an asymptomatic control group consisting of Bell's palsy patients free from facial pain (91 grade-1 NVC and 91 grade-0 NVC), were included in the study. Three hundred seventy-eight radiomic features were extracted from the original MRI images and processed with Laplacian-of-Gaussian filters. The dataset was split into 80% training/validation and 20% testing. Nested cross-validation was employed on the training/validation set for feature selection and model optimization. Furthermore, using the same pipeline approach, two customized deep learning models, Dense Atrous Spatial Pyramid Pooling (ASPP) -201 and MobileASPPV2, were classified using the same pipeline approach, incorporating ASPP blocks.
Results: Performance was assessed over ten and five runs for radiomics-based and deep learning-based models. Subspace Discriminant Ensemble Learning (SDEL) attained an accuracy of 78.8%±7.13%, Support Vector Machines (SVM) reached 74.8%±9.2%, and K-nearest neighbors (KNN) achieved 79%±6.55%. Meanwhile, DenseASPP-201 recorded an accuracy of 82.0 ± 8.4%, and MobileASPPV2 achieved 73.2 ± 5.59%.
Conclusion: The AI effectively distinguished symptomatic and asymptomatic nerves with grade‑1 NVC. Further studies are required to fully elucidate the impact of vascular and nonvascular etiologies that may lead to iTN.
期刊介绍:
Neuroradiology aims to provide state-of-the-art medical and scientific information in the fields of Neuroradiology, Neurosciences, Neurology, Psychiatry, Neurosurgery, and related medical specialities. Neuroradiology as the official Journal of the European Society of Neuroradiology receives submissions from all parts of the world and publishes peer-reviewed original research, comprehensive reviews, educational papers, opinion papers, and short reports on exceptional clinical observations and new technical developments in the field of Neuroimaging and Neurointervention. The journal has subsections for Diagnostic and Interventional Neuroradiology, Advanced Neuroimaging, Paediatric Neuroradiology, Head-Neck-ENT Radiology, Spine Neuroradiology, and for submissions from Japan. Neuroradiology aims to provide new knowledge about and insights into the function and pathology of the human nervous system that may help to better diagnose and treat nervous system diseases. Neuroradiology is a member of the Committee on Publication Ethics (COPE) and follows the COPE core practices. Neuroradiology prefers articles that are free of bias, self-critical regarding limitations, transparent and clear in describing study participants, methods, and statistics, and short in presenting results. Before peer-review all submissions are automatically checked by iThenticate to assess for potential overlap in prior publication.