Taichi Araki, Hibiki Ota, Yusuke Murata, Yuji Sumii, Jin Hamaura, Hiroaki Adachi, Takumi Kagawa, Hisao Hori, Jorge Escorihuela, Norio Shibata
{"title":"Room-temperature defluorination of PTFE and PFAS via sodium dispersion.","authors":"Taichi Araki, Hibiki Ota, Yusuke Murata, Yuji Sumii, Jin Hamaura, Hiroaki Adachi, Takumi Kagawa, Hisao Hori, Jorge Escorihuela, Norio Shibata","doi":"10.1038/s41467-025-61819-6","DOIUrl":null,"url":null,"abstract":"<p><p>Polytetrafluoroethylene (PTFE) and other fluoropolymers are widely used because of their exceptional chemical resistance and thermal stability. However, their disposal poses a significant environmental challenge. Conventional methods for degrading PTFE either require high temperatures or rely on complex reagents and often neglect efficient fluorine recovery. Herein, we present an approach for the room-temperature defluorination of PTFE using sodium dispersion, enabling the conversion of PTFE into sodium fluoride (NaF) under mild conditions. This method not only eliminates the need for elevated temperatures, but also demonstrates high yields of fluoride ion recovery, reaching up to 97% under optimized conditions. We further extend the application of this method to non-polymer, per- and polyfluoroalkyl substances (PFAS), including perfluorononanoic acid (PFNA), perfluorooctanoic acid (PFOA), perfluorobutanesulfonic acid (PFBS) and trifluoroacetic acid (TFA), achieving similarly high yields of NaF with appropriate adjustments of the reaction time and reagent amounts.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"6526"},"PeriodicalIF":14.7000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12264049/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61819-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Polytetrafluoroethylene (PTFE) and other fluoropolymers are widely used because of their exceptional chemical resistance and thermal stability. However, their disposal poses a significant environmental challenge. Conventional methods for degrading PTFE either require high temperatures or rely on complex reagents and often neglect efficient fluorine recovery. Herein, we present an approach for the room-temperature defluorination of PTFE using sodium dispersion, enabling the conversion of PTFE into sodium fluoride (NaF) under mild conditions. This method not only eliminates the need for elevated temperatures, but also demonstrates high yields of fluoride ion recovery, reaching up to 97% under optimized conditions. We further extend the application of this method to non-polymer, per- and polyfluoroalkyl substances (PFAS), including perfluorononanoic acid (PFNA), perfluorooctanoic acid (PFOA), perfluorobutanesulfonic acid (PFBS) and trifluoroacetic acid (TFA), achieving similarly high yields of NaF with appropriate adjustments of the reaction time and reagent amounts.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.