{"title":"Flexible cement fibers with high toughness and water-activated setting behavior for construction.","authors":"Kunkun Zhu, Yaoting Liang, Jingjing Yuan, Hao Yu, Liquan Jiang, Jinfeng Wang, Jinming Zhang, Jun Zhang, Dengpeng Song, Liangjun Xia, Xiaofang Zhang, Weilin Xu","doi":"10.1038/s41467-025-61855-2","DOIUrl":null,"url":null,"abstract":"<p><p>Brittle fracture and facile crack initiation present significant challenges for the toughening and processing of cementitious composites. In this work, the continuous and large-scale fabrication of cement-based fiber is enabled by cellulose-assisted wet spinning strategy, during which cement grains are in-situ implanted into porous cellulose matrix. The subsequent hydration process induces the in-situ formation of a hard continuous network which interconnects with the flexible porous cellulose skeleton, leading an interpenetrating dual-network architecture formed within the resulting cellulose-supported cement-based (CSC) fibers. This architecture provides simultaneous mechanical strength and toughness. Moreover, the resulting CSC fibers exhibit hydration-enabled manufacturability and can be woven into fabrics. The CSC fiber fabric demonstrates high toughness and impact resistance, lightweight properties, low thermal conductivity, and great water-resistance, holding significant potential for applications in thermal insulation, seismic high-rise buildings, and durable construction materials.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"6529"},"PeriodicalIF":15.7000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12264287/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61855-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Brittle fracture and facile crack initiation present significant challenges for the toughening and processing of cementitious composites. In this work, the continuous and large-scale fabrication of cement-based fiber is enabled by cellulose-assisted wet spinning strategy, during which cement grains are in-situ implanted into porous cellulose matrix. The subsequent hydration process induces the in-situ formation of a hard continuous network which interconnects with the flexible porous cellulose skeleton, leading an interpenetrating dual-network architecture formed within the resulting cellulose-supported cement-based (CSC) fibers. This architecture provides simultaneous mechanical strength and toughness. Moreover, the resulting CSC fibers exhibit hydration-enabled manufacturability and can be woven into fabrics. The CSC fiber fabric demonstrates high toughness and impact resistance, lightweight properties, low thermal conductivity, and great water-resistance, holding significant potential for applications in thermal insulation, seismic high-rise buildings, and durable construction materials.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.