scGPT: end-to-end protocol for fine-tuned retinal cell type annotation.

IF 13.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Shanli Ding, Jin Li, Rui Luo, Haotian Cui, Bo Wang, Rui Chen
{"title":"scGPT: end-to-end protocol for fine-tuned retinal cell type annotation.","authors":"Shanli Ding, Jin Li, Rui Luo, Haotian Cui, Bo Wang, Rui Chen","doi":"10.1038/s41596-025-01220-1","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell research faces challenges in accurately annotating cell types at high resolution, especially when dealing with large-scale datasets and rare cell populations. To address this, foundation models such as single-cell generative pretrained transformer (scGPT) offer flexible, scalable solutions by leveraging transformer-based architectures. Here we provide a comprehensive guide to fine-tuning scGPT for cell-type classification in single-cell RNA sequencing data. We demonstrate how to fine-tune scGPT on a custom retina dataset, highlighting the model's efficiency in handling complex data and improving annotation accuracy achieving 99.5% F1-score. This protocol automates key steps, including data preprocessing, model fine-tuning and evaluation. This protocol enables researchers to efficiently deploy scGPT for their own datasets. The provided tools, including a command-line script and Jupyter Notebook, simplify the customization and exploration of the model, proposing an accessible workflow for users with minimal Python and Linux knowledge. The protocol offers an off-the-shell solution of high-precision cell-type annotation using scGPT for researchers with intermediate bioinformatics. The source code and example datasets are publicly available on GitHub and Zenodo.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-025-01220-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell research faces challenges in accurately annotating cell types at high resolution, especially when dealing with large-scale datasets and rare cell populations. To address this, foundation models such as single-cell generative pretrained transformer (scGPT) offer flexible, scalable solutions by leveraging transformer-based architectures. Here we provide a comprehensive guide to fine-tuning scGPT for cell-type classification in single-cell RNA sequencing data. We demonstrate how to fine-tune scGPT on a custom retina dataset, highlighting the model's efficiency in handling complex data and improving annotation accuracy achieving 99.5% F1-score. This protocol automates key steps, including data preprocessing, model fine-tuning and evaluation. This protocol enables researchers to efficiently deploy scGPT for their own datasets. The provided tools, including a command-line script and Jupyter Notebook, simplify the customization and exploration of the model, proposing an accessible workflow for users with minimal Python and Linux knowledge. The protocol offers an off-the-shell solution of high-precision cell-type annotation using scGPT for researchers with intermediate bioinformatics. The source code and example datasets are publicly available on GitHub and Zenodo.

scGPT:端到端协议微调视网膜细胞类型注释。
单细胞研究面临着在高分辨率下准确标注细胞类型的挑战,特别是在处理大规模数据集和罕见细胞群时。为了解决这个问题,诸如单细胞生成预训练变压器(scGPT)之类的基础模型通过利用基于变压器的体系结构提供了灵活的、可扩展的解决方案。在这里,我们提供了一个全面的指导微调scGPT细胞类型分类在单细胞RNA测序数据。我们演示了如何在自定义视网膜数据集上微调scGPT,突出了模型在处理复杂数据方面的效率,并提高了注释准确性,达到99.5%的F1-score。该协议自动化了关键步骤,包括数据预处理、模型微调和评估。该协议使研究人员能够有效地为他们自己的数据集部署scGPT。提供的工具,包括命令行脚本和Jupyter Notebook,简化了模型的定制和探索,为具有最少Python和Linux知识的用户提供了一个可访问的工作流。该协议为具有中级生物信息学的研究人员提供了使用scGPT的高精度细胞类型注释的现成解决方案。源代码和示例数据集可以在GitHub和Zenodo上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信