Yiming Chen, Wenxu Tang, Yifan Wang, Ya Gao, Jiaqi Hu, Yixuan Lu, Long Meng, Hairong Zheng, Yi Feng, Liming Cheng, Wenyong Fan, Qian Cheng, Lei Xue
{"title":"Real-time Monitoring Unveils Three Distinct Neuronal Response Patterns to SAW Ultrasound via L-type Calcium Channels.","authors":"Yiming Chen, Wenxu Tang, Yifan Wang, Ya Gao, Jiaqi Hu, Yixuan Lu, Long Meng, Hairong Zheng, Yi Feng, Liming Cheng, Wenyong Fan, Qian Cheng, Lei Xue","doi":"10.1007/s12264-025-01457-6","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrasound neuromodulation shows promise for treating neurological disorders, but the underlying mechanisms remain unclear. Here, we developed an integrated surface acoustic wave (SAW) ultrasound chip enabling simultaneous electrophysiological recording and Ca<sup>2+</sup> imaging of cultured hippocampal neurons to investigate neuronal excitability and synaptic transmission during ultrasound stimulation. This study revealed, for the first time, three distinct neuronal response patterns induced by SAW ultrasound: an immediate response showing rapid activation, a delayed response exhibiting facilitation after several minutes, and a non-response maintaining baseline activity. Ultrasound stimulation increased action potential firing, enhanced excitatory postsynaptic currents, and elevated intracellular Ca<sup>2+</sup> levels. These effects were dependent on extracellular Ca<sup>2+</sup> influx and primarily dominated by L-type Ca<sup>2+</sup> channels. Our findings suggest that individual neurons exhibit heterogeneous responses to SAW ultrasound stimulation based on their intracellular Ca<sup>2+</sup> levels and L-type Ca<sup>2+</sup> channel activity. This integrated approach provides new insights into the cellular mechanisms of ultrasound neuromodulation while highlighting the potential of SAW technology for precise, cell-type-specific neural control.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-025-01457-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrasound neuromodulation shows promise for treating neurological disorders, but the underlying mechanisms remain unclear. Here, we developed an integrated surface acoustic wave (SAW) ultrasound chip enabling simultaneous electrophysiological recording and Ca2+ imaging of cultured hippocampal neurons to investigate neuronal excitability and synaptic transmission during ultrasound stimulation. This study revealed, for the first time, three distinct neuronal response patterns induced by SAW ultrasound: an immediate response showing rapid activation, a delayed response exhibiting facilitation after several minutes, and a non-response maintaining baseline activity. Ultrasound stimulation increased action potential firing, enhanced excitatory postsynaptic currents, and elevated intracellular Ca2+ levels. These effects were dependent on extracellular Ca2+ influx and primarily dominated by L-type Ca2+ channels. Our findings suggest that individual neurons exhibit heterogeneous responses to SAW ultrasound stimulation based on their intracellular Ca2+ levels and L-type Ca2+ channel activity. This integrated approach provides new insights into the cellular mechanisms of ultrasound neuromodulation while highlighting the potential of SAW technology for precise, cell-type-specific neural control.
期刊介绍:
Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer.
NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.