Equol as a Multitarget Agent Against Neurodegeneration: Mechanistic Insights into Its Molecular Modulation.

IF 3.3 4区 医学 Q2 NEUROSCIENCES
Nushrat Jahan, Lovedeep Singh, Jyoti Sharma
{"title":"Equol as a Multitarget Agent Against Neurodegeneration: Mechanistic Insights into Its Molecular Modulation.","authors":"Nushrat Jahan, Lovedeep Singh, Jyoti Sharma","doi":"10.1007/s12017-025-08875-9","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases consist of a group of progressive disorders characterized by the gradual decline in the structure or function of neurons, which ultimately results in neuronal death. The occurrence and societal effects of these disorders have been consistently rising, presenting considerable public health challenges globally. Multiple interconnected pathways, including oxidative stress, neuroinflammation, nitrosative stress, and apoptosis, drive their progression. NOX-induced ROS disrupts neuronal function, impairs mitochondrial activity, and triggers lipid peroxidation, contributing to neuronal death. Activation of the TLR-4/MAPK/NF-κB pathway triggers neuroinflammation and NLRP3 inflammasome activation. This inflammasome-driven inflammation accelerates neuronal injury and death. Moreover, reduced estrogen receptor expression weakens neuronal defenses, impairing synaptic function, thereby worsening neurodegeneration. Neurodegenerative diseases continue to be without a cure, as existing treatments focus on alleviating symptoms and modifying the disease. Due to their intricate and multifactorial pathophysiology, there is a pressing need for agents capable of targeting multiple pathological mechanisms to effectively combat these disorders. Various phytomolecules have shown promise in tackling different neurodegenerative diseases by modulating key molecular targets. Equol (4',7-isoflavandiol) is a metabolite of daidzein, a soy isoflavone present in soybeans and various other plant sources. Equol has shown significant promise in combating neurodegeneration by modulating mediators involved in oxidative stress, neuroinflammation, nitrosative stress, and apoptosis. Key signaling molecules influenced by equol include TLR-4, MAPKs, NLRP3 inflammasome, ROS, and inflammatory mediators, among others. Considering equol's ability to modulate these signaling mediators, this review explores the mechanistic pathways through which equol confers neuroprotection.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":"27 1","pages":"51"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroMolecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-025-08875-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Neurodegenerative diseases consist of a group of progressive disorders characterized by the gradual decline in the structure or function of neurons, which ultimately results in neuronal death. The occurrence and societal effects of these disorders have been consistently rising, presenting considerable public health challenges globally. Multiple interconnected pathways, including oxidative stress, neuroinflammation, nitrosative stress, and apoptosis, drive their progression. NOX-induced ROS disrupts neuronal function, impairs mitochondrial activity, and triggers lipid peroxidation, contributing to neuronal death. Activation of the TLR-4/MAPK/NF-κB pathway triggers neuroinflammation and NLRP3 inflammasome activation. This inflammasome-driven inflammation accelerates neuronal injury and death. Moreover, reduced estrogen receptor expression weakens neuronal defenses, impairing synaptic function, thereby worsening neurodegeneration. Neurodegenerative diseases continue to be without a cure, as existing treatments focus on alleviating symptoms and modifying the disease. Due to their intricate and multifactorial pathophysiology, there is a pressing need for agents capable of targeting multiple pathological mechanisms to effectively combat these disorders. Various phytomolecules have shown promise in tackling different neurodegenerative diseases by modulating key molecular targets. Equol (4',7-isoflavandiol) is a metabolite of daidzein, a soy isoflavone present in soybeans and various other plant sources. Equol has shown significant promise in combating neurodegeneration by modulating mediators involved in oxidative stress, neuroinflammation, nitrosative stress, and apoptosis. Key signaling molecules influenced by equol include TLR-4, MAPKs, NLRP3 inflammasome, ROS, and inflammatory mediators, among others. Considering equol's ability to modulate these signaling mediators, this review explores the mechanistic pathways through which equol confers neuroprotection.

马雌酚作为抗神经变性的多靶点药物:其分子调控机制的见解。
神经退行性疾病包括一组以神经元结构或功能逐渐下降为特征的进行性疾病,最终导致神经元死亡。这些疾病的发病率和社会影响一直在上升,在全球范围内构成了相当大的公共卫生挑战。多种相互关联的途径,包括氧化应激、神经炎症、亚硝化应激和细胞凋亡,驱动其进展。一氧化氮诱导的活性氧破坏神经元功能,损害线粒体活性,引发脂质过氧化,导致神经元死亡。TLR-4/MAPK/NF-κB通路的激活可触发神经炎症和NLRP3炎性体的激活。这种炎症小体引发的炎症加速了神经元的损伤和死亡。此外,雌激素受体表达减少会削弱神经元防御,损害突触功能,从而加重神经变性。神经退行性疾病仍然无法治愈,因为现有的治疗方法侧重于减轻症状和改变疾病。由于其复杂和多因素的病理生理,迫切需要能够靶向多种病理机制的药物来有效地对抗这些疾病。各种植物分子通过调节关键分子靶点在治疗不同的神经退行性疾病方面显示出希望。马酚(4′,7-异黄酮二醇)是大豆黄素的代谢物,大豆黄素是大豆和其他植物来源中的大豆异黄酮。马酚通过调节参与氧化应激、神经炎症、亚硝化应激和细胞凋亡的介质,在对抗神经退行性变方面显示出显著的前景。受马雌酚影响的关键信号分子包括TLR-4、MAPKs、NLRP3炎性体、ROS和炎症介质等。考虑到雌马酚调节这些信号介质的能力,本综述探讨了雌马酚赋予神经保护的机制途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NeuroMolecular Medicine
NeuroMolecular Medicine 医学-神经科学
CiteScore
7.10
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: NeuroMolecular Medicine publishes cutting-edge original research articles and critical reviews on the molecular and biochemical basis of neurological disorders. Studies range from genetic analyses of human populations to animal and cell culture models of neurological disorders. Emerging findings concerning the identification of genetic aberrancies and their pathogenic mechanisms at the molecular and cellular levels will be included. Also covered are experimental analyses of molecular cascades involved in the development and adult plasticity of the nervous system, in neurological dysfunction, and in neuronal degeneration and repair. NeuroMolecular Medicine encompasses basic research in the fields of molecular genetics, signal transduction, plasticity, and cell death. The information published in NEMM will provide a window into the future of molecular medicine for the nervous system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信