{"title":"Theaflavin-3,3´-Digallate Prevents Alcoholic Liver Injury by Suppressing Hepatic TLR4/NF-κB Signaling and Modulating the Gut-Liver Axis in Mice.","authors":"Meng-Ge Tang, Li-Gui Xiong, Jian-An Huang, Yukihiko Hara, Sheng Zhang, Zhong-Hua Liu, Ai-Ling Liu","doi":"10.1016/j.jnutbio.2025.110031","DOIUrl":null,"url":null,"abstract":"<p><p>Dietary intervention is crucial for the clinical management of alcoholic liver injury. As the primary bioactive component in fermented tea, theaflavin-3,3'-digallate (TF3) possesses potent antioxidative and anti-inflammatory capacities, but its protective mechanisms against alcoholic liver injury via the gut-liver axis require systematic elucidation. This study evaluated the protective effects and underlying mechanisms of high-purity TF3 (2.5/5/10 mg/kg, 12-week oral gavage) against alcoholic liver injury in C57BL/6J mice. TF3 administration significantly reduced serum lipids, attenuated hepatic steatosis, and suppressed oxidative stress and pro-inflammatory cytokine production in alcohol-fed mice. Mechanistically, TF3 enhanced intestinal barrier integrity by upregulating tight junction proteins in the colon and ileum, increased beneficial microbiota like Lactobacillus and Bifidobacterium, and modulated microbial metabolites including short-chain fatty acids (SCFAs) and tryptophan. These changes reduced circulating lipopolysaccharide (LPS), suppressed hepatic toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway activation, and ultimately ameliorated hepatic inflammation while enhancing oxidative stress regulation. This work reveals novel mechanisms of TF3 in preventing alcoholic liver injury, providing a theoretical foundation for dietary applications.</p>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":" ","pages":"110031"},"PeriodicalIF":4.8000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jnutbio.2025.110031","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dietary intervention is crucial for the clinical management of alcoholic liver injury. As the primary bioactive component in fermented tea, theaflavin-3,3'-digallate (TF3) possesses potent antioxidative and anti-inflammatory capacities, but its protective mechanisms against alcoholic liver injury via the gut-liver axis require systematic elucidation. This study evaluated the protective effects and underlying mechanisms of high-purity TF3 (2.5/5/10 mg/kg, 12-week oral gavage) against alcoholic liver injury in C57BL/6J mice. TF3 administration significantly reduced serum lipids, attenuated hepatic steatosis, and suppressed oxidative stress and pro-inflammatory cytokine production in alcohol-fed mice. Mechanistically, TF3 enhanced intestinal barrier integrity by upregulating tight junction proteins in the colon and ileum, increased beneficial microbiota like Lactobacillus and Bifidobacterium, and modulated microbial metabolites including short-chain fatty acids (SCFAs) and tryptophan. These changes reduced circulating lipopolysaccharide (LPS), suppressed hepatic toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway activation, and ultimately ameliorated hepatic inflammation while enhancing oxidative stress regulation. This work reveals novel mechanisms of TF3 in preventing alcoholic liver injury, providing a theoretical foundation for dietary applications.
期刊介绍:
Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology.
Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.