{"title":"Allogeneic cetuximab-armed gamma delta T cells using antibody-cell conjugation technology for the treatment of EGFR-expressing solid tumors.","authors":"Hao-Kang Li, Tai-Sheng Wu, Ying Ru, Yi-Chiu Kuo, Chia-Yun Lee, Pei-Ju Leng, Yi-Chun Hsieh, Yun-Jung Chiang, Zih-Fei Cheng, Yan-Liang Lin, Shih-Chia Hsiao, Sai-Wen Tang","doi":"10.1136/jitc-2024-010500","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Targeting epidermal growth factor receptor (EGFR) has become a strategic approach in cancer therapy, using various modalities including chimeric antigen receptor (CAR)-αβT cell therapies. Despite significant advancements in autologous CAR-αβT cell therapies in B-cell lymphoma, current cell therapies face challenges such as potential risks associated with genetic engineering, waiting time and high costs of autologous CAR-αβT cell therapies. Innovations in click chemistry and bioorthogonal chemistry have enabled the development of antibody-cell conjugation (ACC) technology, which links cancer-targeting antibodies to immune cells without genetic modifications, potentially providing a safer profile.</p><p><strong>Methods: </strong>In this study, we introduce ACE2016, an innovative allogeneic cell therapy targeting EGFR. ACE2016 is generated by ACC technology to conjugate donor-derived γδ2 T cells with the EGFR-specific antibody cetuximab.</p><p><strong>Results: </strong>Our preclinical studies demonstrate that ACE2016 exhibits superior cytotoxicity against various EGFR-expressing cancer cell lines and minimal cytotoxic effects on normal cells. Mechanistic studies revealed that ACE2016 enhances cytotoxicity through increased capacity towards EGFR-expressing cancer cells, enhanced levels of cytotoxic cytokines and recruitment of peripheral cytotoxic cells, reflecting significant tumor suppression and prolonged survival in ACE2016-treated groups without causing treatment-related toxicity in vivo.</p><p><strong>Conclusions: </strong>These findings support the clinical potential of ACE2016 as an off-the-shelf γδ2 T-cell therapy for EGFR-expressing cancers, offering a combination of specificity, scalability, and safety in the development of solid tumor therapy.</p>","PeriodicalId":14820,"journal":{"name":"Journal for Immunotherapy of Cancer","volume":"13 7","pages":""},"PeriodicalIF":10.3000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12265807/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for Immunotherapy of Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jitc-2024-010500","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Targeting epidermal growth factor receptor (EGFR) has become a strategic approach in cancer therapy, using various modalities including chimeric antigen receptor (CAR)-αβT cell therapies. Despite significant advancements in autologous CAR-αβT cell therapies in B-cell lymphoma, current cell therapies face challenges such as potential risks associated with genetic engineering, waiting time and high costs of autologous CAR-αβT cell therapies. Innovations in click chemistry and bioorthogonal chemistry have enabled the development of antibody-cell conjugation (ACC) technology, which links cancer-targeting antibodies to immune cells without genetic modifications, potentially providing a safer profile.
Methods: In this study, we introduce ACE2016, an innovative allogeneic cell therapy targeting EGFR. ACE2016 is generated by ACC technology to conjugate donor-derived γδ2 T cells with the EGFR-specific antibody cetuximab.
Results: Our preclinical studies demonstrate that ACE2016 exhibits superior cytotoxicity against various EGFR-expressing cancer cell lines and minimal cytotoxic effects on normal cells. Mechanistic studies revealed that ACE2016 enhances cytotoxicity through increased capacity towards EGFR-expressing cancer cells, enhanced levels of cytotoxic cytokines and recruitment of peripheral cytotoxic cells, reflecting significant tumor suppression and prolonged survival in ACE2016-treated groups without causing treatment-related toxicity in vivo.
Conclusions: These findings support the clinical potential of ACE2016 as an off-the-shelf γδ2 T-cell therapy for EGFR-expressing cancers, offering a combination of specificity, scalability, and safety in the development of solid tumor therapy.
期刊介绍:
The Journal for ImmunoTherapy of Cancer (JITC) is a peer-reviewed publication that promotes scientific exchange and deepens knowledge in the constantly evolving fields of tumor immunology and cancer immunotherapy. With an open access format, JITC encourages widespread access to its findings. The journal covers a wide range of topics, spanning from basic science to translational and clinical research. Key areas of interest include tumor-host interactions, the intricate tumor microenvironment, animal models, the identification of predictive and prognostic immune biomarkers, groundbreaking pharmaceutical and cellular therapies, innovative vaccines, combination immune-based treatments, and the study of immune-related toxicity.