Postoperative complication severity prediction in penile prosthesis implantation: a machine learning-based predictive modeling study.

IF 2.8 3区 医学 Q2 UROLOGY & NEPHROLOGY
Ali Ünal, Ali Şahin, Mesut Altan, İhsan Batuhan Demir, İyimser Üre, Hazım Alparslan Mazlum, Lorenzo Cirigliano, Mirko Preto, Marco Falcone, Murat Gül
{"title":"Postoperative complication severity prediction in penile prosthesis implantation: a machine learning-based predictive modeling study.","authors":"Ali Ünal, Ali Şahin, Mesut Altan, İhsan Batuhan Demir, İyimser Üre, Hazım Alparslan Mazlum, Lorenzo Cirigliano, Mirko Preto, Marco Falcone, Murat Gül","doi":"10.1038/s41443-025-01135-1","DOIUrl":null,"url":null,"abstract":"<p><p>Prediction of postoperative complications is crucial in surgical care, particularly for penile prosthesis implantation. We retrospectively evaluated demographic, clinical, laboratory, and surgical data from patients who underwent penile prosthesis implantation between 2015 and 2023. Six machine learning algorithms-Gradient Boosting (GB), AdaBoost, Support Vector Machine (SVM), Random Forest (RF), XGBoost (XGB), and Naive Bayes (NB)-were trained to predict the occurrence and severity of postoperative complications. Model performance was assessed using accuracy, F1 score, sensitivity, specificity, Youden Index, and AUC value, and statistical comparisons identified the most effective approach. The GB model achieved the highest F1 score (0.86 ± 0.09; 95% CI, 0.84-0.87), significantly outperforming other models. Sensitivity was greatest for GB and XGB (0.78 ± 0.13; 95% CI, 0.75-0.80), with GB superior to AdaBoost and SVM (p < 0.001). RF demonstrated the highest specificity (1.00 ± 0.00; 95% CI, 1.00-1.00), exceeding AdaBoost, SVM, and NB (p < 0.001). GB best predicted mild complications (0.74 ± 0.14; 95% CI, 0.72-0.77), while NB excelled for severe complications (0.94 ± 0.17; 95% CI, 0.90-0.98). Overall accuracy was 0.90 ± 0.04 (95% CI, 0.89-0.90) for both GB and RF. Feature analysis highlighted HbA1c, total testosterone, and urea as key predictors. Implementing GB-based machine learning may enhance surgical decision-making in this setting.</p>","PeriodicalId":14068,"journal":{"name":"International Journal of Impotence Research","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Impotence Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41443-025-01135-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Prediction of postoperative complications is crucial in surgical care, particularly for penile prosthesis implantation. We retrospectively evaluated demographic, clinical, laboratory, and surgical data from patients who underwent penile prosthesis implantation between 2015 and 2023. Six machine learning algorithms-Gradient Boosting (GB), AdaBoost, Support Vector Machine (SVM), Random Forest (RF), XGBoost (XGB), and Naive Bayes (NB)-were trained to predict the occurrence and severity of postoperative complications. Model performance was assessed using accuracy, F1 score, sensitivity, specificity, Youden Index, and AUC value, and statistical comparisons identified the most effective approach. The GB model achieved the highest F1 score (0.86 ± 0.09; 95% CI, 0.84-0.87), significantly outperforming other models. Sensitivity was greatest for GB and XGB (0.78 ± 0.13; 95% CI, 0.75-0.80), with GB superior to AdaBoost and SVM (p < 0.001). RF demonstrated the highest specificity (1.00 ± 0.00; 95% CI, 1.00-1.00), exceeding AdaBoost, SVM, and NB (p < 0.001). GB best predicted mild complications (0.74 ± 0.14; 95% CI, 0.72-0.77), while NB excelled for severe complications (0.94 ± 0.17; 95% CI, 0.90-0.98). Overall accuracy was 0.90 ± 0.04 (95% CI, 0.89-0.90) for both GB and RF. Feature analysis highlighted HbA1c, total testosterone, and urea as key predictors. Implementing GB-based machine learning may enhance surgical decision-making in this setting.

阴茎假体植入术后并发症严重程度预测:基于机器学习的预测模型研究。
预测术后并发症是外科护理的关键,特别是阴茎假体植入。我们回顾性评估了2015年至2023年间接受阴茎假体植入的患者的人口学、临床、实验室和手术数据。训练梯度增强(GB)、AdaBoost、支持向量机(SVM)、随机森林(RF)、XGBoost (XGB)和朴素贝叶斯(NB)六种机器学习算法来预测术后并发症的发生和严重程度。通过准确性、F1评分、敏感性、特异性、约登指数和AUC值评估模型性能,通过统计比较确定了最有效的方法。GB模型F1评分最高(0.86±0.09);95% CI, 0.84-0.87),显著优于其他模型。GB和XGB灵敏度最高(0.78±0.13;95% CI, 0.75-0.80), GB优于AdaBoost和SVM (p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Impotence Research
International Journal of Impotence Research 医学-泌尿学与肾脏学
CiteScore
4.90
自引率
19.20%
发文量
140
审稿时长
>12 weeks
期刊介绍: International Journal of Impotence Research: The Journal of Sexual Medicine addresses sexual medicine for both genders as an interdisciplinary field. This includes basic science researchers, urologists, endocrinologists, cardiologists, family practitioners, gynecologists, internists, neurologists, psychiatrists, psychologists, radiologists and other health care clinicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信