Overcoming triple mutant EGFR-tyrosine kinase barriers in the therapeutics of non-small cell lung cancer: a patent review on fourth-generation inhibitors (2017-2024).
{"title":"Overcoming triple mutant EGFR-tyrosine kinase barriers in the therapeutics of non-small cell lung cancer: a patent review on fourth-generation inhibitors (2017-2024).","authors":"Narendra R Nagpure, Harun M Patel","doi":"10.1080/13543776.2025.2536006","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Non-small cell lung cancer (NSCLC) remains a leading cause of cancer mortality, with 'epidermal growth factor receptor (EGFR)' mutations being a primary driver of tumor progression. This review highlights the significance of fourth-generation EGFR tyrosine kinase inhibitors (EGFR-TKIs) in addressing acquired resistance mechanisms, such as the C797S mutation, which compromises the efficacy of third-generation inhibitors like Osimertinib and explores their potential to revolutionize NSCLC treatment through enhanced molecular specificity.</p><p><strong>Areas covered: </strong>This review covers the latest progress in the patented Fourth-Generation EGFR-Tyrosine Kinase inhibitors and their clinical trial status for the treatment of Non-Small Cell Lung Cancer (NSCLC) from 2017 to the present.</p><p><strong>Expert opinion: </strong>Osimertinib, a third-generation EGFR inhibitor, revolutionized treatment for T790M mutations but is limited by resistance from C797S mutations. Fourth-generation EGFR inhibitors, incorporating scaffolds like aminopyrimidine and quinazoline, are designed to selectively target resistant EGFR variants, including L858R/T790M/C797S. Preclinical trials highlight the potential of sulfonyl and phosphine oxide-based compounds for their potency, selectivity, and favorable pharmacokinetics. Promising clinical trials with inhibitors like BDTX-1535, JIN-A02, and HS-10504 could redefine NSCLC treatment, with future success likely relying on innovative strategies, such as combination therapies, to combat resistance and enhance efficacy.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Therapeutic Patents","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13543776.2025.2536006","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Non-small cell lung cancer (NSCLC) remains a leading cause of cancer mortality, with 'epidermal growth factor receptor (EGFR)' mutations being a primary driver of tumor progression. This review highlights the significance of fourth-generation EGFR tyrosine kinase inhibitors (EGFR-TKIs) in addressing acquired resistance mechanisms, such as the C797S mutation, which compromises the efficacy of third-generation inhibitors like Osimertinib and explores their potential to revolutionize NSCLC treatment through enhanced molecular specificity.
Areas covered: This review covers the latest progress in the patented Fourth-Generation EGFR-Tyrosine Kinase inhibitors and their clinical trial status for the treatment of Non-Small Cell Lung Cancer (NSCLC) from 2017 to the present.
Expert opinion: Osimertinib, a third-generation EGFR inhibitor, revolutionized treatment for T790M mutations but is limited by resistance from C797S mutations. Fourth-generation EGFR inhibitors, incorporating scaffolds like aminopyrimidine and quinazoline, are designed to selectively target resistant EGFR variants, including L858R/T790M/C797S. Preclinical trials highlight the potential of sulfonyl and phosphine oxide-based compounds for their potency, selectivity, and favorable pharmacokinetics. Promising clinical trials with inhibitors like BDTX-1535, JIN-A02, and HS-10504 could redefine NSCLC treatment, with future success likely relying on innovative strategies, such as combination therapies, to combat resistance and enhance efficacy.
期刊介绍:
Expert Opinion on Therapeutic Patents (ISSN 1354-3776 [print], 1744-7674 [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on recent pharmaceutical patent claims, providing expert opinion the scope for future development, in the context of the scientific literature.
The Editors welcome:
Reviews covering recent patent claims on compounds or applications with therapeutic potential, including biotherapeutics and small-molecule agents with specific molecular targets; and patenting trends in a particular therapeutic area
Patent Evaluations examining the aims and chemical and biological claims of individual patents
Perspectives on issues relating to intellectual property
The audience consists of scientists, managers and decision-makers in the pharmaceutical industry and others closely involved in R&D
Sample our Bioscience journals, sign in here to start your access, Latest two full volumes FREE to you for 14 days.