Rashad Ibragimov, Rovshan Khalilov, Fidan Nuriyeva, Ilgiz Gareev, Ozal Beylerli, Sergey Roumiantsev, Muhammad Zafar, Deema Kamal Sabir, Salman Majeed, Muhammad Rizwan Khan, Aleena Gul, Jonida Biturku
{"title":"Uncovering the oxidative stress and hematological consequences of chronic cobalt exposure on atherosclerosis.","authors":"Rashad Ibragimov, Rovshan Khalilov, Fidan Nuriyeva, Ilgiz Gareev, Ozal Beylerli, Sergey Roumiantsev, Muhammad Zafar, Deema Kamal Sabir, Salman Majeed, Muhammad Rizwan Khan, Aleena Gul, Jonida Biturku","doi":"10.1007/s10534-025-00722-5","DOIUrl":null,"url":null,"abstract":"<p><p>Overproduction of reactive oxygen species (ROS) causes oxidative stress, which is a significant risk factor for the onset and advancement of atherosclerosis. However, in current study, rats with experimentally generated atherosclerosis (EA) are used to examine the effects of prolonged cobalt nitrate exposure on oxidative stress and hematological markers. An atherogenic diet, methylprednisolone, alcohol, and mercazolil were all used in a polyetiological method to imitate atherosclerosis. In the following 60 days, rats were given drinking water containing 2 mg/kg of cobalt nitrate. The following oxidative stress markers were examined: hematological indices, diene conjugates (DC), catalase (CA), and malondialdehyde (MDA) at baseline, after EA induction, and during cobalt exposure. However, Significant oxidative imbalance was caused on by EA alone, which increased MDA (18%) and DC (20%) while decreasing CA activity (22%). By day 60, cobalt exposure amplified these effects, leading to a decrease in CA (27%) and increasing increases in MDA (64%) and DC (35%). Hematologically, EA first increased granulocytes (1.2 ×), leukocytes (1.8 ×), and lymphocytes (1.3 ×), which were indicative of systemic inflammation. Cobalt, however, overcomes these patterns, gradually causing hemoglobin depletion, erythrocytopenia, and leukopenia. Hemoglobin and mean corpuscular hemoglobin (MCH) dropped by 24% and 25%, respectively, by day 60, suggesting that erythropoiesis and iron metabolism were compromised. The investigation emphasizes that cobalt complicates oxidative stress and blood abnormalities associated with atherosclerosis. Chronic exposure contributes to vascular damage through oxidative and inflammatory mechanisms, even at subtoxic concentrations, exposing people with cardiovascular diseases at risk. In addition to offering treatment options for oxidative stress and hematopoietic support, it emphasizes the necessity of tracking cobalt exposure in at-risk populations. It is advised to conduct additional research and reevaluate the cobalt safety limits.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10534-025-00722-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Overproduction of reactive oxygen species (ROS) causes oxidative stress, which is a significant risk factor for the onset and advancement of atherosclerosis. However, in current study, rats with experimentally generated atherosclerosis (EA) are used to examine the effects of prolonged cobalt nitrate exposure on oxidative stress and hematological markers. An atherogenic diet, methylprednisolone, alcohol, and mercazolil were all used in a polyetiological method to imitate atherosclerosis. In the following 60 days, rats were given drinking water containing 2 mg/kg of cobalt nitrate. The following oxidative stress markers were examined: hematological indices, diene conjugates (DC), catalase (CA), and malondialdehyde (MDA) at baseline, after EA induction, and during cobalt exposure. However, Significant oxidative imbalance was caused on by EA alone, which increased MDA (18%) and DC (20%) while decreasing CA activity (22%). By day 60, cobalt exposure amplified these effects, leading to a decrease in CA (27%) and increasing increases in MDA (64%) and DC (35%). Hematologically, EA first increased granulocytes (1.2 ×), leukocytes (1.8 ×), and lymphocytes (1.3 ×), which were indicative of systemic inflammation. Cobalt, however, overcomes these patterns, gradually causing hemoglobin depletion, erythrocytopenia, and leukopenia. Hemoglobin and mean corpuscular hemoglobin (MCH) dropped by 24% and 25%, respectively, by day 60, suggesting that erythropoiesis and iron metabolism were compromised. The investigation emphasizes that cobalt complicates oxidative stress and blood abnormalities associated with atherosclerosis. Chronic exposure contributes to vascular damage through oxidative and inflammatory mechanisms, even at subtoxic concentrations, exposing people with cardiovascular diseases at risk. In addition to offering treatment options for oxidative stress and hematopoietic support, it emphasizes the necessity of tracking cobalt exposure in at-risk populations. It is advised to conduct additional research and reevaluate the cobalt safety limits.
期刊介绍:
BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of:
- metal ions
- metal chelates,
- siderophores,
- metal-containing proteins
- biominerals in all biosystems.
- BioMetals rapidly publishes original articles and reviews.
BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.