Jesse M Hanlan, Sam Dillavou, Andrea J Liu, Douglas J Durian
{"title":"Cornerstones are the key stones: using interpretable machine learning to probe the clogging process in 2D granular hoppers.","authors":"Jesse M Hanlan, Sam Dillavou, Andrea J Liu, Douglas J Durian","doi":"10.1039/d5sm00367a","DOIUrl":null,"url":null,"abstract":"<p><p>The sudden arrest of flow by formation of a stable arch over an outlet is a unique and characteristic feature of granular materials. Previous work suggests that grains near the outlet randomly sample configurational flow microstates until a clog-causing flow microstate is reached. However, factors that lead to clogging remain elusive. Here we experimentally observe over 50 000 clogging events for a tridisperse mixture of quasi-2D circular grains, and utilize a variety of machine learning (ML) methods to search for predictive signatures of clogging microstates. This approach fares just modestly better than chance. Nevertheless, our analysis using linear Support Vector Machines (SVMs) highlights the position of potential arch cornerstones as a key factor in clogging likelihood. We verify this experimentally by varying the position of a fixed (cornerstone) grain, which we show non-monotonically alters the average time and mass of each flow by dictating the size of feasible flow-ending arches. Positioning this grain correctly can even increase the ejected mass by 70%. Our findings suggest a bottom-up arch formation process, and demonstrate that interpretable ML algorithms like SVMs, paired with experiments, can uncover meaningful physics even when their predictive power is below the standards of conventional ML practice.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sm00367a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The sudden arrest of flow by formation of a stable arch over an outlet is a unique and characteristic feature of granular materials. Previous work suggests that grains near the outlet randomly sample configurational flow microstates until a clog-causing flow microstate is reached. However, factors that lead to clogging remain elusive. Here we experimentally observe over 50 000 clogging events for a tridisperse mixture of quasi-2D circular grains, and utilize a variety of machine learning (ML) methods to search for predictive signatures of clogging microstates. This approach fares just modestly better than chance. Nevertheless, our analysis using linear Support Vector Machines (SVMs) highlights the position of potential arch cornerstones as a key factor in clogging likelihood. We verify this experimentally by varying the position of a fixed (cornerstone) grain, which we show non-monotonically alters the average time and mass of each flow by dictating the size of feasible flow-ending arches. Positioning this grain correctly can even increase the ejected mass by 70%. Our findings suggest a bottom-up arch formation process, and demonstrate that interpretable ML algorithms like SVMs, paired with experiments, can uncover meaningful physics even when their predictive power is below the standards of conventional ML practice.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.