Gunaseelan Eazhumalai, Ranjitha Gracy T. K. and Uday S. Annapure
{"title":"Cold plasma enhanced gelation and thermal properties of oat protein and its application in a selected model food system","authors":"Gunaseelan Eazhumalai, Ranjitha Gracy T. K. and Uday S. Annapure","doi":"10.1039/D5FB00129C","DOIUrl":null,"url":null,"abstract":"<p >Cold plasma-induced reactions are anticipated to yield structural changes in plant proteins to desirably modify their gelation properties. The present study aimed to investigate the effects of atmospheric pin-to-plate cold plasma treatment on the gelation and thermal properties of oat protein. Oat protein was subjected to cold plasma at different input voltages (170 V and 230 V) and exposure times (15 min and 30 min) and was studied for its rheological and thermal characteristics. Protein gels were made using the thermal gelation method at the lowest gelation concentration (20% w/v) and were studied for their rheological and textural properties. While all the plasma-treated protein dispersions showed increased rheological properties due to the induced aggregation, the gels formed from the 230 V-15 min treated sample exhibited higher viscosity (∼7981 cP), visco-elastic moduli (<em>G</em>′ – 3682.4 Pa; <em>G</em>′′ – 1170.50 Pa) and stability (<em>γ</em><small><sub>c</sub></small> – 2.11%) compared to all other samples owing to the medium-sized aggregates and the positive zeta potential. This might also be attributed to a decreased denaturation temperature (∼93.29 °C) of the sample. Additionally, plasma-treated oat protein-incorporated patties demonstrated improved functional properties, including reduced syneresis loss (∼74% reduction) and increased compression juice loss (∼36% rise) due to enhanced moisture retention and water holding capacity. Textural analysis revealed that patties containing oat protein treated at 230 V for 15 min exhibited superior softness after cooking. These findings suggest that cold plasma treatment enhances the gelation properties of oat protein under specific treatment conditions, improving the textural attributes of the plant-based patties.</p>","PeriodicalId":101198,"journal":{"name":"Sustainable Food Technology","volume":" 4","pages":" 1203-1217"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/fb/d5fb00129c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Food Technology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/fb/d5fb00129c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cold plasma-induced reactions are anticipated to yield structural changes in plant proteins to desirably modify their gelation properties. The present study aimed to investigate the effects of atmospheric pin-to-plate cold plasma treatment on the gelation and thermal properties of oat protein. Oat protein was subjected to cold plasma at different input voltages (170 V and 230 V) and exposure times (15 min and 30 min) and was studied for its rheological and thermal characteristics. Protein gels were made using the thermal gelation method at the lowest gelation concentration (20% w/v) and were studied for their rheological and textural properties. While all the plasma-treated protein dispersions showed increased rheological properties due to the induced aggregation, the gels formed from the 230 V-15 min treated sample exhibited higher viscosity (∼7981 cP), visco-elastic moduli (G′ – 3682.4 Pa; G′′ – 1170.50 Pa) and stability (γc – 2.11%) compared to all other samples owing to the medium-sized aggregates and the positive zeta potential. This might also be attributed to a decreased denaturation temperature (∼93.29 °C) of the sample. Additionally, plasma-treated oat protein-incorporated patties demonstrated improved functional properties, including reduced syneresis loss (∼74% reduction) and increased compression juice loss (∼36% rise) due to enhanced moisture retention and water holding capacity. Textural analysis revealed that patties containing oat protein treated at 230 V for 15 min exhibited superior softness after cooking. These findings suggest that cold plasma treatment enhances the gelation properties of oat protein under specific treatment conditions, improving the textural attributes of the plant-based patties.