Hardware Evaluation of Interference Alignment Techniques Under Different Channel State Information Updating Rates

IF 4.8 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
David Alejandro Urquiza Villalonga;Alejandro López Barrios;Máximo Morales-Céspedes;M. Julia Fernández-Getino García
{"title":"Hardware Evaluation of Interference Alignment Techniques Under Different Channel State Information Updating Rates","authors":"David Alejandro Urquiza Villalonga;Alejandro López Barrios;Máximo Morales-Céspedes;M. Julia Fernández-Getino García","doi":"10.1109/OJVT.2025.3581878","DOIUrl":null,"url":null,"abstract":"Wireless networks are evolving to provide high data rates, ultra-low latency, reliable communications, and the connectivity of multiple devices in a reduced area. However, massive densification of networks leads to an increase in interfering signals. In this context, interference alignment (IA) algorithms have been proposed to manage interference while increasing the achievable degrees of freedom. However, the practical implementation of IA algorithms faces several issues such as the lack of perfect channel state information (CSI), network synchronization, or modeling a highly heterogeneous signal-to-interference-plus-noise (SINR) distribution. In this work, we propose an experimental evaluation of IA emulating an interference-limited network but focusing on the user perspective. In contrast to previous works, a hardware testbed with universal software radio peripherals (USRPs) is implemented to model heterogeneous SINR networks. The role of both closed and open loops for providing CSI is evaluated. Then, the impact of CSI updating on the spectral efficiency and also on the bit error rate (BER) is analyzed. Furthermore, precoding techniques such as zero-forcing (ZF) or singular value decomposition (SVD) are also considered for comparison purposes. All the results are based on real measurements providing valuable insights into the performance of IA algorithms in real wireless networks.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"1760-1773"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11046342","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11046342/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Wireless networks are evolving to provide high data rates, ultra-low latency, reliable communications, and the connectivity of multiple devices in a reduced area. However, massive densification of networks leads to an increase in interfering signals. In this context, interference alignment (IA) algorithms have been proposed to manage interference while increasing the achievable degrees of freedom. However, the practical implementation of IA algorithms faces several issues such as the lack of perfect channel state information (CSI), network synchronization, or modeling a highly heterogeneous signal-to-interference-plus-noise (SINR) distribution. In this work, we propose an experimental evaluation of IA emulating an interference-limited network but focusing on the user perspective. In contrast to previous works, a hardware testbed with universal software radio peripherals (USRPs) is implemented to model heterogeneous SINR networks. The role of both closed and open loops for providing CSI is evaluated. Then, the impact of CSI updating on the spectral efficiency and also on the bit error rate (BER) is analyzed. Furthermore, precoding techniques such as zero-forcing (ZF) or singular value decomposition (SVD) are also considered for comparison purposes. All the results are based on real measurements providing valuable insights into the performance of IA algorithms in real wireless networks.
不同信道状态信息更新速率下干扰对准技术的硬件评价
无线网络正在不断发展,以提供高数据速率、超低延迟、可靠的通信以及在缩小的区域内多个设备的连接。然而,网络的大量致密化导致干扰信号的增加。在这种情况下,干扰对准(IA)算法被提出来管理干扰,同时增加可实现的自由度。然而,IA算法的实际实现面临几个问题,如缺乏完美的信道状态信息(CSI),网络同步,或建模高度异构的信号-干扰-噪声(SINR)分布。在这项工作中,我们提出了模拟干扰限制网络的IA实验评估,但侧重于用户视角。与以前的工作相比,实现了一个带有通用软件无线电外设(usrp)的硬件测试平台来模拟异构SINR网络。评估了闭合环和开环在提供CSI方面的作用。然后,分析了CSI更新对频谱效率和误码率的影响。此外,为了进行比较,还考虑了诸如零强制(ZF)或奇异值分解(SVD)之类的预编码技术。所有的结果都基于真实的测量,为真实无线网络中IA算法的性能提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信