Simon Haziza, Radosław Chrapkiewicz, Yanping Zhang, Vasily Kruzhilin, Jane Li, Jizhou Li, Geoffroy Delamare, Rachel Swanson, György Buzsáki, Madhuvanthi Kannan, Ganesh Vasan, Michael Z. Lin, Hongkui Zeng, Tanya L. Daigle, Mark J. Schnitzer
{"title":"Imaging high-frequency voltage dynamics in multiple neuron classes of behaving mammals","authors":"Simon Haziza, Radosław Chrapkiewicz, Yanping Zhang, Vasily Kruzhilin, Jane Li, Jizhou Li, Geoffroy Delamare, Rachel Swanson, György Buzsáki, Madhuvanthi Kannan, Ganesh Vasan, Michael Z. Lin, Hongkui Zeng, Tanya L. Daigle, Mark J. Schnitzer","doi":"10.1016/j.cell.2025.06.028","DOIUrl":null,"url":null,"abstract":"Fluorescent genetically encoded voltage indicators report transmembrane potentials of targeted cell types. However, voltage-imaging instrumentation has lacked the sensitivity to track spontaneous or evoked high-frequency voltage oscillations in neural populations. Here, we describe two complementary TEMPO (transmembrane electrical measurements performed optically) voltage-sensing technologies that capture neural oscillations up to ∼100 Hz. Fiber-optic TEMPO achieves ∼10-fold greater sensitivity than prior photometric voltage sensing, allows hour-long recordings, and monitors two neuron classes per fiber-optic probe in freely moving mice. With it, we uncovered cross-frequency-coupled theta- and gamma-range oscillations and characterized excitatory-inhibitory neural dynamics during hippocampal ripples and visual cortical processing. The TEMPO mesoscope images voltage activity in two cell classes across an ∼8-mm-wide field of view in head-fixed animals. In awake mice, it revealed sensory-evoked excitatory-inhibitory neural interactions and traveling gamma and 3–7 Hz waves in visual cortex and bidirectional propagation directions for both hippocampal theta and beta waves. These technologies have widespread applications probing diverse oscillations and neuron-type interactions in healthy and diseased brains.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"11 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.06.028","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorescent genetically encoded voltage indicators report transmembrane potentials of targeted cell types. However, voltage-imaging instrumentation has lacked the sensitivity to track spontaneous or evoked high-frequency voltage oscillations in neural populations. Here, we describe two complementary TEMPO (transmembrane electrical measurements performed optically) voltage-sensing technologies that capture neural oscillations up to ∼100 Hz. Fiber-optic TEMPO achieves ∼10-fold greater sensitivity than prior photometric voltage sensing, allows hour-long recordings, and monitors two neuron classes per fiber-optic probe in freely moving mice. With it, we uncovered cross-frequency-coupled theta- and gamma-range oscillations and characterized excitatory-inhibitory neural dynamics during hippocampal ripples and visual cortical processing. The TEMPO mesoscope images voltage activity in two cell classes across an ∼8-mm-wide field of view in head-fixed animals. In awake mice, it revealed sensory-evoked excitatory-inhibitory neural interactions and traveling gamma and 3–7 Hz waves in visual cortex and bidirectional propagation directions for both hippocampal theta and beta waves. These technologies have widespread applications probing diverse oscillations and neuron-type interactions in healthy and diseased brains.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.