Soft sputtering of NIR-transparent InGaTiO top electrodes on semi-transparent perovskite solar cells for perovskite-Si tandem solar cells

IF 17.1 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jaehoon Jeong , So Jeong Park , Seunghoon Park , Doha Lim , Joon Jang , Hyun-Jung Jung , Jin Young Kim , Han-Ki Kim
{"title":"Soft sputtering of NIR-transparent InGaTiO top electrodes on semi-transparent perovskite solar cells for perovskite-Si tandem solar cells","authors":"Jaehoon Jeong ,&nbsp;So Jeong Park ,&nbsp;Seunghoon Park ,&nbsp;Doha Lim ,&nbsp;Joon Jang ,&nbsp;Hyun-Jung Jung ,&nbsp;Jin Young Kim ,&nbsp;Han-Ki Kim","doi":"10.1016/j.nanoen.2025.111327","DOIUrl":null,"url":null,"abstract":"<div><div>Achieving high-efficiency perovskite–silicon tandem solar cells can only be accomplished through the development of semi-transparent perovskite solar cells (STPSCs) with transparent top and bottom electrodes. In this study, we propose Ga and Ti co-doped In<sub>2</sub>O<sub>3</sub> (IGTO) as a near-infrared (NIR) transparent top electrode. The electrode was fabricated via a specially designed isolated plasma soft deposition (IPSD) system to minimize plasma-induced damage caused by the bombardment of energetic particles. Despite being processed at room temperature, the IPSD-grown IGTO electrode exhibited high carrier mobility (≈ 77 cm² V⁻¹ s⁻¹), excellent optical transparency (&gt; 90 % in the visible and NIR regions), low sheet resistance (28 Ω sq⁻¹), and a smooth surface (roughness ≈ 0.4 nm). A STPSC incorporating the IPSD-grown IGTO electrodes achieved a power conversion efficiency (PCE) of 18.71 %, with a NIR transmittance of 88.8 %. Compared to conventional indium tin oxide (ITO)-based tandem cells, the IGTO-based tandem cell demonstrated an enhanced short-circuit current density when integrated into a four-terminal perovskite/Si tandem configuration, resulting in a PCE of 26.05 %. These findings highlight the potential of IPSD-grown plasma damage-free IGTO as a promising alternative to conventional ITO electrodes for high-performance tandem solar cells.</div></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"143 ","pages":"Article 111327"},"PeriodicalIF":17.1000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221128552500686X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving high-efficiency perovskite–silicon tandem solar cells can only be accomplished through the development of semi-transparent perovskite solar cells (STPSCs) with transparent top and bottom electrodes. In this study, we propose Ga and Ti co-doped In2O3 (IGTO) as a near-infrared (NIR) transparent top electrode. The electrode was fabricated via a specially designed isolated plasma soft deposition (IPSD) system to minimize plasma-induced damage caused by the bombardment of energetic particles. Despite being processed at room temperature, the IPSD-grown IGTO electrode exhibited high carrier mobility (≈ 77 cm² V⁻¹ s⁻¹), excellent optical transparency (> 90 % in the visible and NIR regions), low sheet resistance (28 Ω sq⁻¹), and a smooth surface (roughness ≈ 0.4 nm). A STPSC incorporating the IPSD-grown IGTO electrodes achieved a power conversion efficiency (PCE) of 18.71 %, with a NIR transmittance of 88.8 %. Compared to conventional indium tin oxide (ITO)-based tandem cells, the IGTO-based tandem cell demonstrated an enhanced short-circuit current density when integrated into a four-terminal perovskite/Si tandem configuration, resulting in a PCE of 26.05 %. These findings highlight the potential of IPSD-grown plasma damage-free IGTO as a promising alternative to conventional ITO electrodes for high-performance tandem solar cells.

Abstract Image

钙钛矿-硅串联太阳能电池中nir透明InGaTiO顶电极在半透明钙钛矿太阳能电池上的软溅射
实现高效钙钛矿-硅串联太阳能电池只能通过开发具有透明上下电极的半透明钙钛矿太阳能电池(STPSCs)来实现。在这项研究中,我们提出了Ga和Ti共掺杂In2O3 (IGTO)作为近红外(NIR)透明顶部电极。该电极是通过特殊设计的隔离等离子体软沉积(IPSD)系统制备的,以最大限度地减少高能粒子轰击引起的等离子体损伤。尽管在室温下处理,ipsd生长的IGTO电极表现出高载流子迁移率(≈77 cm²V⁻¹s),优异的光学透明度(>;90%在可见光和近红外区域),低片电阻(28 Ω平方⁻¹),表面光滑(粗糙度≈0.4 nm)。结合ipsd生长的IGTO电极的STPSC实现了18.71%的功率转换效率(PCE),近红外透射率为88.8%。与传统的ITO基串联电池相比,当集成到四端钙钛矿/Si串联结构中时,igto基串联电池的短路电流密度增强,PCE为26.05%。这些发现突出了ipsd培养的等离子体无损伤IGTO作为高性能串联太阳能电池的传统ITO电极的有希望的替代品的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信