Yidan Liu, Xiuxing Liu, Jianjie Lv, Qi Zhang, Zhenlan Yang, Xuhao Chen, Chenyang Gu, Chun Zhang, Yehong Zhuo, Wenru Su
{"title":"Heterochronic parabiosis uncovers AdipoR1 as a critical player in retinal rejuvenation","authors":"Yidan Liu, Xiuxing Liu, Jianjie Lv, Qi Zhang, Zhenlan Yang, Xuhao Chen, Chenyang Gu, Chun Zhang, Yehong Zhuo, Wenru Su","doi":"10.1126/sciadv.adv6642","DOIUrl":null,"url":null,"abstract":"Aging induces substantial structural and functional decline in the retina, yet the molecular drivers of this process remain elusive. In this study, we used heterochronic parabiosis (HP) combined with single-cell RNA sequencing to generate comprehensive transcriptomic profiles of murine retinas from young, aged, and HP pairs, aiming to identify antiaging targets. Our analysis revealed extensive transcriptional alterations across retinal cell types with aging. HP experiments demonstrated that systemic factors from young mice rejuvenated aged retinas and alleviated senescent phenotypes, while aged blood accelerated aging in young mice. Integrative analysis pinpointed adiponectin receptor 1 (AdipoR1) and the downstream adenosine 5′-monophosphate–activated protein kinase (AMPK) signaling pathway as central to the molecular mechanisms underlying retinal rejuvenation. Treatment with the AdipoR1 agonist AdipoRon reversed retinal aging. Mechanistically, AdipoR1-AMPK activation promoted mitochondrial function, contributing to the restoration of youthful cellular phenotypes. Together, our study identifies AdipoR1 as a therapeutic target for retinal aging and provides insights into the molecular programs driving retinal rejuvenation.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"108 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adv6642","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Aging induces substantial structural and functional decline in the retina, yet the molecular drivers of this process remain elusive. In this study, we used heterochronic parabiosis (HP) combined with single-cell RNA sequencing to generate comprehensive transcriptomic profiles of murine retinas from young, aged, and HP pairs, aiming to identify antiaging targets. Our analysis revealed extensive transcriptional alterations across retinal cell types with aging. HP experiments demonstrated that systemic factors from young mice rejuvenated aged retinas and alleviated senescent phenotypes, while aged blood accelerated aging in young mice. Integrative analysis pinpointed adiponectin receptor 1 (AdipoR1) and the downstream adenosine 5′-monophosphate–activated protein kinase (AMPK) signaling pathway as central to the molecular mechanisms underlying retinal rejuvenation. Treatment with the AdipoR1 agonist AdipoRon reversed retinal aging. Mechanistically, AdipoR1-AMPK activation promoted mitochondrial function, contributing to the restoration of youthful cellular phenotypes. Together, our study identifies AdipoR1 as a therapeutic target for retinal aging and provides insights into the molecular programs driving retinal rejuvenation.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.