Kaining Mao, Chenfei Liu, Yi Wang, Chaoxuan Gu, John M. Putziger, Nicholas I. Cemalovic, Cameron Muniz, Yue Qi, Song Lin
{"title":"Dynamic kinetic resolution of phosphines with chiral supporting electrolytes","authors":"Kaining Mao, Chenfei Liu, Yi Wang, Chaoxuan Gu, John M. Putziger, Nicholas I. Cemalovic, Cameron Muniz, Yue Qi, Song Lin","doi":"10.1038/s41586-025-09238-x","DOIUrl":null,"url":null,"abstract":"<p>The synthesis of enantiopure compounds is a central focus in organic chemistry owing to the prevalence of chiral centres in biological systems and the impact of homochirality on molecular properties. With growing recognition of electrochemistry as a powerful tool to improve the scope and sustainability of organic synthesis<sup>1</sup>, increasing efforts have been directed towards developing asymmetric electrocatalytic reactions to access challenging chiral molecules<sup>2,3,4</sup>. However, many useful electrochemical reactions rely on direct electrolysis without a catalyst, making them inherently difficult to render enantioselective. Supporting electrolytes are integral to electrochemical systems and, in addition to ensuring sufficient solution conductivity, they can influence the rate and selectivity of electrochemical transformations<sup>5</sup>. Chiral supporting electrolytes can mediate asymmetric reactions via direct electrolysis, but their use in organic electrosynthesis remains largely unexplored<sup>6,7</sup>. Here we describe the use of substoichiometric chiral phosphate salts as supporting electrolytes to facilitate the oxidation of racemic trivalent phosphines to afford enantioenriched phosphine oxides. Our approach relies on a dynamic-kinetic-resolution strategy that exploits the rapid pyramidal inversion of an anodically generated phosphoniumyl radical cation<sup>8</sup>, while a high concentration of chiral phosphate at the electrode–electrolyte interface<sup>9,10</sup> enhances enantioselective control during rate-limiting nucleophilic addition. Our results highlight the promise of chiral supporting electrolytes for promoting radical-ion-mediated asymmetric transformations.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"4 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-09238-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The synthesis of enantiopure compounds is a central focus in organic chemistry owing to the prevalence of chiral centres in biological systems and the impact of homochirality on molecular properties. With growing recognition of electrochemistry as a powerful tool to improve the scope and sustainability of organic synthesis1, increasing efforts have been directed towards developing asymmetric electrocatalytic reactions to access challenging chiral molecules2,3,4. However, many useful electrochemical reactions rely on direct electrolysis without a catalyst, making them inherently difficult to render enantioselective. Supporting electrolytes are integral to electrochemical systems and, in addition to ensuring sufficient solution conductivity, they can influence the rate and selectivity of electrochemical transformations5. Chiral supporting electrolytes can mediate asymmetric reactions via direct electrolysis, but their use in organic electrosynthesis remains largely unexplored6,7. Here we describe the use of substoichiometric chiral phosphate salts as supporting electrolytes to facilitate the oxidation of racemic trivalent phosphines to afford enantioenriched phosphine oxides. Our approach relies on a dynamic-kinetic-resolution strategy that exploits the rapid pyramidal inversion of an anodically generated phosphoniumyl radical cation8, while a high concentration of chiral phosphate at the electrode–electrolyte interface9,10 enhances enantioselective control during rate-limiting nucleophilic addition. Our results highlight the promise of chiral supporting electrolytes for promoting radical-ion-mediated asymmetric transformations.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.