{"title":"Trans-organ analysis of gene co-expression networks reveals a mobile long-distance regulator that balances shoot and root development in Arabidopsis","authors":"Jia Yuan Ye, Yasuhito Sakuraba, Meng Na Zhuo, Yousuke Torii, Namie Ohtsuki, Wen Hao Tian, Chong Wei Jin, Shao Jian Zheng, Keiichi Mochida, Shuichi Yanagisawa","doi":"10.1038/s41477-025-02052-3","DOIUrl":null,"url":null,"abstract":"<p>Long-distance regulation between individual organs is a fundamental process for the optimized adaptation of the plant body to diverse environments. However, systematic methods for identifying key genes for long-distance regulation are currently unavailable. Here we present a new approach, trans-organ analysis of gene co-expression networks, which offers a unique way of identifying candidates for such genes. This approach revealed that TGA7 functions as a shoot-to-root mobile bZIP transcription factor in <i>Arabidopsis</i> to activate photosynthetic genes directly in shoots and nitrate-uptake-related genes, both directly and via a transcriptional cascade, in roots. Analysis of grafted chimeras showed that nitrogen-deficiency-induced enhanced <i>TGA7</i> expression in shoot vascular tissue promotes TGA7 protein accumulation in roots, boosting root growth and nitrate uptake. Furthermore, the loss of TGA7-mediated long-distance regulation perturbed the balance between shoot and root development under nitrogen deficiency. These findings underscore the utility of our approach for uncovering long-distance regulation in plants.</p>","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41477-025-02052-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Long-distance regulation between individual organs is a fundamental process for the optimized adaptation of the plant body to diverse environments. However, systematic methods for identifying key genes for long-distance regulation are currently unavailable. Here we present a new approach, trans-organ analysis of gene co-expression networks, which offers a unique way of identifying candidates for such genes. This approach revealed that TGA7 functions as a shoot-to-root mobile bZIP transcription factor in Arabidopsis to activate photosynthetic genes directly in shoots and nitrate-uptake-related genes, both directly and via a transcriptional cascade, in roots. Analysis of grafted chimeras showed that nitrogen-deficiency-induced enhanced TGA7 expression in shoot vascular tissue promotes TGA7 protein accumulation in roots, boosting root growth and nitrate uptake. Furthermore, the loss of TGA7-mediated long-distance regulation perturbed the balance between shoot and root development under nitrogen deficiency. These findings underscore the utility of our approach for uncovering long-distance regulation in plants.
期刊介绍:
Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.