Xunchuan Liu, Tie Liu, Pak-Shing Li, Xiaofeng Mai, Christian Henkel, Paul F. Goldsmith, Sheng-Li Qin, Yan Gong, Xing Lu, Fengwei Xu, Qiuyi Luo, Hong-Li Liu, Tianwei Zhang, Yu Cheng, Yihuan Di, Yuefang Wu, Qilao Gu, Ningyu Tang, Aiyuan Yang, Zhiqiang Shen
{"title":"A network of velocity-coherent filaments formed by supersonic turbulence in a very-high-velocity H i cloud","authors":"Xunchuan Liu, Tie Liu, Pak-Shing Li, Xiaofeng Mai, Christian Henkel, Paul F. Goldsmith, Sheng-Li Qin, Yan Gong, Xing Lu, Fengwei Xu, Qiuyi Luo, Hong-Li Liu, Tianwei Zhang, Yu Cheng, Yihuan Di, Yuefang Wu, Qilao Gu, Ningyu Tang, Aiyuan Yang, Zhiqiang Shen","doi":"10.1038/s41550-025-02605-8","DOIUrl":null,"url":null,"abstract":"The warm neutral medium (WNM) was thought to be subsonically/transonically turbulent, and it lacks a network of intertwined filaments that are commonly seen in both molecular clouds and the cold neutral medium. We report H i 21-cm-line observations of a very-high-velocity (−330 km s−1 < VLSR < −250 km s−1) cloud (VHVC), using the Five-Hundred-Meter Aperture Spherical Radio Telescope (FAST), with very high resolution and sensitivity. Such a VHVC is here clearly revealed to be a supersonic WNM system consisting of a network of velocity-coherent H i filaments. The filaments are in the forms of slim curves, hubs and webs, distributed in different layers within the position–position–velocity (ppv) data cube. The entire cloud has skewed lognormal probability distribution of column density and the filaments themselves show asymmetrical radial density profiles, indicating shock compression by supersonic magnetohydrodynamic (MHD) turbulence, as is also confirmed by our MHD simulation (sonic Mach number Ms = 3 and Alfvén Mach number MA = 1). This suggests that hierarchical filaments can be established by shocks in a low-density WNM, where gravity is negligible, offering a viable pathway to structure formation in the earliest evolutionary phases of the interstellar medium. High-resolution FAST observations of a very-high-velocity cloud in the warm neutral medium reveal a network of hierarchical filaments formed by shock compression. These findings suggest a viable mechanism for early structure formation in the interstellar medium.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"9 9","pages":"1366-1374"},"PeriodicalIF":14.3000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41550-025-02605-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The warm neutral medium (WNM) was thought to be subsonically/transonically turbulent, and it lacks a network of intertwined filaments that are commonly seen in both molecular clouds and the cold neutral medium. We report H i 21-cm-line observations of a very-high-velocity (−330 km s−1 < VLSR < −250 km s−1) cloud (VHVC), using the Five-Hundred-Meter Aperture Spherical Radio Telescope (FAST), with very high resolution and sensitivity. Such a VHVC is here clearly revealed to be a supersonic WNM system consisting of a network of velocity-coherent H i filaments. The filaments are in the forms of slim curves, hubs and webs, distributed in different layers within the position–position–velocity (ppv) data cube. The entire cloud has skewed lognormal probability distribution of column density and the filaments themselves show asymmetrical radial density profiles, indicating shock compression by supersonic magnetohydrodynamic (MHD) turbulence, as is also confirmed by our MHD simulation (sonic Mach number Ms = 3 and Alfvén Mach number MA = 1). This suggests that hierarchical filaments can be established by shocks in a low-density WNM, where gravity is negligible, offering a viable pathway to structure formation in the earliest evolutionary phases of the interstellar medium. High-resolution FAST observations of a very-high-velocity cloud in the warm neutral medium reveal a network of hierarchical filaments formed by shock compression. These findings suggest a viable mechanism for early structure formation in the interstellar medium.
Nature AstronomyPhysics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍:
Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas.
Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence.
In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.