Establishing a pure antiferroelectric PbZrO3 phase through tensile epitaxial strain.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Krina Parmar,Pauline Dufour,Emma Texier,Cécile Carrétéro,Xiaoyan Li,Florian Godel,Jirka Hlinka,Brahim Dkhil,Daniel Sando,Hugo Aramberri,Jorge Íñiguez-González,Stéphane Fusil,Alexandre Gloter,Thomas Maroutian,Vincent Garcia
{"title":"Establishing a pure antiferroelectric PbZrO3 phase through tensile epitaxial strain.","authors":"Krina Parmar,Pauline Dufour,Emma Texier,Cécile Carrétéro,Xiaoyan Li,Florian Godel,Jirka Hlinka,Brahim Dkhil,Daniel Sando,Hugo Aramberri,Jorge Íñiguez-González,Stéphane Fusil,Alexandre Gloter,Thomas Maroutian,Vincent Garcia","doi":"10.1038/s41467-025-61867-y","DOIUrl":null,"url":null,"abstract":"The nature of lead zirconate, the historical antiferroelectric material, has recently been challenged. In PbZrO3 epitaxial films, thickness reduction engenders competition among antiferroelectric, ferrielectric and ferroelectric phases. All studies so far on PbZrO3 films have utilized commercially-available oxide single crystals with large compressive lattice mismatch, causing the films to undergo strain relaxation. First-principles calculations have predicted that tensile strain can stabilize antiferroelectricity down to the nanometre scale. Here we use tensile strain imposed by artificial substrates of LaLuO3 to stabilize a pure antiferroelectric phase in PbZrO3. Sharp double hysteresis loops of polarization vs electric field show zero remanent polarization, and polar displacement maps reveal the characteristic up-up-down-down antipolar pattern down to 9 nanometre film thicknesses. Moreover, the electron beam can move this antipolar pattern through the nucleation and annihilation of translational boundaries. These results highlight the critical role of coherent epitaxial strain in the phase stability of PbZrO3.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"6536"},"PeriodicalIF":14.7000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61867-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The nature of lead zirconate, the historical antiferroelectric material, has recently been challenged. In PbZrO3 epitaxial films, thickness reduction engenders competition among antiferroelectric, ferrielectric and ferroelectric phases. All studies so far on PbZrO3 films have utilized commercially-available oxide single crystals with large compressive lattice mismatch, causing the films to undergo strain relaxation. First-principles calculations have predicted that tensile strain can stabilize antiferroelectricity down to the nanometre scale. Here we use tensile strain imposed by artificial substrates of LaLuO3 to stabilize a pure antiferroelectric phase in PbZrO3. Sharp double hysteresis loops of polarization vs electric field show zero remanent polarization, and polar displacement maps reveal the characteristic up-up-down-down antipolar pattern down to 9 nanometre film thicknesses. Moreover, the electron beam can move this antipolar pattern through the nucleation and annihilation of translational boundaries. These results highlight the critical role of coherent epitaxial strain in the phase stability of PbZrO3.
通过拉伸外延应变建立了纯反铁电PbZrO3相。
锆酸铅的性质,历史上的反铁电材料,最近受到挑战。在PbZrO3外延薄膜中,厚度的减小会导致反铁电相、铁电相和铁电相之间的竞争。到目前为止,对PbZrO3薄膜的研究都是利用市售的具有较大压缩晶格失配的氧化单晶,导致薄膜发生应变松弛。第一性原理计算预测,拉伸应变可以稳定到纳米尺度的反铁电。在这里,我们利用LaLuO3人造衬底施加的拉伸应变来稳定PbZrO3中的纯反铁电相。极化与电场的尖锐双磁滞回线显示零剩余极化,极性位移图显示在9纳米薄膜厚度下具有典型的上-上-下-下反极性模式。此外,电子束可以移动这个反极性图案通过成核和湮灭的平移边界。这些结果强调了相干外延应变在PbZrO3相稳定性中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信