Paran Goel,Sajesan Aryal,Alana M Franceski,Valeriya Kuznetsova,Amanda Fernandes De Oliveira Costa,Francesca Luca,Ashley N Connelly,Daniel W Phillips,Caroline C Ennis,Brittany M Curtiss,Sourajeet Karfa,Brittany L Crown,Christina R Larson,Estelle Carminita,Virginia Camacho,Doug Welsch,Changde Cheng,Asumi Yokota,Isidoro Cobo,Hideyo Hirai,Rui Lu,Ravi Bhatia,Pran K Datta,Paul Brent Ferrell,Robert S Welner
{"title":"The acute myeloid leukemia microenvironment impairs neutrophil maturation and function through NFκB signaling.","authors":"Paran Goel,Sajesan Aryal,Alana M Franceski,Valeriya Kuznetsova,Amanda Fernandes De Oliveira Costa,Francesca Luca,Ashley N Connelly,Daniel W Phillips,Caroline C Ennis,Brittany M Curtiss,Sourajeet Karfa,Brittany L Crown,Christina R Larson,Estelle Carminita,Virginia Camacho,Doug Welsch,Changde Cheng,Asumi Yokota,Isidoro Cobo,Hideyo Hirai,Rui Lu,Ravi Bhatia,Pran K Datta,Paul Brent Ferrell,Robert S Welner","doi":"10.1182/blood.2024028199","DOIUrl":null,"url":null,"abstract":"Acute myeloid leukemia (AML), an aggressive hematological malignancy, is driven by oncogenic mutations in stem and progenitor cells that give rise to AML blasts. While these mutations are well-characterized, their impact on healthy hematopoiesis-those blood cells exposed to AML but not mutated-has not been well-characterized. As the marrow is the major site for granulopoiesis, neutrophils are heavily influenced by AML pathobiology. Indeed, most AML patients report neutropenia, rendering them susceptible to infections. However, since AML studies use peripheral blood mononuclear cells devoid of neutrophils, the characterization of neutrophil dysfunction remains poorly understood. To investigate AML-exposed neutrophils, a pre-clinical AML mouse model was used where primary leukemic cells were transplanted into non-irradiated neutrophil reporter (Ly6G-tdTomato; Catchup) hosts. Neutrophils could not completely mature, suggesting impaired granulopoiesis. Single-cell transcriptomics of AML-exposed neutrophils revealed higher inflammation signatures and expression of CD14, an inflammatory marker. To address the factors contributing to this biology, an ex vivo cytokine screen was performed on marrow neutrophils and identified that NFκB signaling drove CD14 expression. AML-exposed neutrophils displayed widespread chromatin remodeling, and de novo motif discovery predicted increased binding sites for CCAAT-enhancer-binding proteins (C/EBPs) and Interferon regulatory factors (IRFs). Moreover, AML-exposed neutrophils inhibited T-cell proliferation, highlighting their immune-suppressive capability. Finally, similar biology of immature, inflammatory neutrophils was found in AML patients, again indicating dysregulated granulopoiesis. Collectively, these data show that AML-associated inflammation alters neutrophil granulopoiesis, impairs neutrophil function, and drives immunosuppression, thus contributing to patient susceptibility to infection.","PeriodicalId":9102,"journal":{"name":"Blood","volume":"29 1","pages":""},"PeriodicalIF":21.0000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1182/blood.2024028199","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute myeloid leukemia (AML), an aggressive hematological malignancy, is driven by oncogenic mutations in stem and progenitor cells that give rise to AML blasts. While these mutations are well-characterized, their impact on healthy hematopoiesis-those blood cells exposed to AML but not mutated-has not been well-characterized. As the marrow is the major site for granulopoiesis, neutrophils are heavily influenced by AML pathobiology. Indeed, most AML patients report neutropenia, rendering them susceptible to infections. However, since AML studies use peripheral blood mononuclear cells devoid of neutrophils, the characterization of neutrophil dysfunction remains poorly understood. To investigate AML-exposed neutrophils, a pre-clinical AML mouse model was used where primary leukemic cells were transplanted into non-irradiated neutrophil reporter (Ly6G-tdTomato; Catchup) hosts. Neutrophils could not completely mature, suggesting impaired granulopoiesis. Single-cell transcriptomics of AML-exposed neutrophils revealed higher inflammation signatures and expression of CD14, an inflammatory marker. To address the factors contributing to this biology, an ex vivo cytokine screen was performed on marrow neutrophils and identified that NFκB signaling drove CD14 expression. AML-exposed neutrophils displayed widespread chromatin remodeling, and de novo motif discovery predicted increased binding sites for CCAAT-enhancer-binding proteins (C/EBPs) and Interferon regulatory factors (IRFs). Moreover, AML-exposed neutrophils inhibited T-cell proliferation, highlighting their immune-suppressive capability. Finally, similar biology of immature, inflammatory neutrophils was found in AML patients, again indicating dysregulated granulopoiesis. Collectively, these data show that AML-associated inflammation alters neutrophil granulopoiesis, impairs neutrophil function, and drives immunosuppression, thus contributing to patient susceptibility to infection.
期刊介绍:
Blood, the official journal of the American Society of Hematology, published online and in print, provides an international forum for the publication of original articles describing basic laboratory, translational, and clinical investigations in hematology. Primary research articles will be published under the following scientific categories: Clinical Trials and Observations; Gene Therapy; Hematopoiesis and Stem Cells; Immunobiology and Immunotherapy scope; Myeloid Neoplasia; Lymphoid Neoplasia; Phagocytes, Granulocytes and Myelopoiesis; Platelets and Thrombopoiesis; Red Cells, Iron and Erythropoiesis; Thrombosis and Hemostasis; Transfusion Medicine; Transplantation; and Vascular Biology. Papers can be listed under more than one category as appropriate.