Cation interdiffusion control for 2D/3D heterostructure formation and stabilization in inorganic perovskite solar modules

IF 49.7 1区 材料科学 Q1 ENERGY & FUELS
Cheng Liu, Yi Yang, Jared D. Fletcher, Ao Liu, Isaiah W. Gilley, Charles Bruce Musgrave III, Zaiwei Wang, Huihui Zhu, Hao Chen, Robert P. Reynolds, Bin Ding, Yong Ding, Xianfu Zhang, Raminta Skackauskaite, Haoyue Wan, Lewei Zeng, Abdulaziz S. R. Bati, Naoyuki Shibayama, Vytautas Getautis, Bin Chen, Kasparas Rakstys, Paul J. Dyson, Mercouri G. Kanatzidis, Edward H. Sargent, Mohammad K. Nazeeruddin
{"title":"Cation interdiffusion control for 2D/3D heterostructure formation and stabilization in inorganic perovskite solar modules","authors":"Cheng Liu, Yi Yang, Jared D. Fletcher, Ao Liu, Isaiah W. Gilley, Charles Bruce Musgrave III, Zaiwei Wang, Huihui Zhu, Hao Chen, Robert P. Reynolds, Bin Ding, Yong Ding, Xianfu Zhang, Raminta Skackauskaite, Haoyue Wan, Lewei Zeng, Abdulaziz S. R. Bati, Naoyuki Shibayama, Vytautas Getautis, Bin Chen, Kasparas Rakstys, Paul J. Dyson, Mercouri G. Kanatzidis, Edward H. Sargent, Mohammad K. Nazeeruddin","doi":"10.1038/s41560-025-01817-6","DOIUrl":null,"url":null,"abstract":"<p>Inorganic perovskite solar cells could benefit from surface passivation using 2D/3D perovskite heterostructures. However, conventional spacer cations fail to exchange with the tightly bonded Cs cation in the inorganic perovskite to form 2D layers atop; or, when they do enable formation of a 2D layer, they migrate under heat, degrading device performance. Here we investigate the mechanisms behind 2D/3D heterostructure formation and stabilization. We find that 2D/3D heterostructure formation is driven by interactions between ammonium groups and [PbI<sub>6</sub>]<sup>4−</sup> octahedra. We thus incorporate electron-withdrawing fluorine to enhance inorganic–organic cation interdiffusion and promote heterostructure formation. We note that stability relies on interactions between the entire spacer cations and [PbI<sub>6</sub>]<sup>4−</sup> octahedra. We therefore introduce anchoring groups that double cation desorption energies, preventing cation migration at elevated temperatures. CsPbI<sub>3</sub>/(perfluoro-1,4-phenylene)dimethanammonium lead iodide heterostructures enable an efficiency of 21.6% and a maximum power point operating stability at 85 °C of 950 h. We demonstrate 16-cm<sup>2</sup> modules with an efficiency of 19.8%.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"48 1","pages":""},"PeriodicalIF":49.7000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41560-025-01817-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Inorganic perovskite solar cells could benefit from surface passivation using 2D/3D perovskite heterostructures. However, conventional spacer cations fail to exchange with the tightly bonded Cs cation in the inorganic perovskite to form 2D layers atop; or, when they do enable formation of a 2D layer, they migrate under heat, degrading device performance. Here we investigate the mechanisms behind 2D/3D heterostructure formation and stabilization. We find that 2D/3D heterostructure formation is driven by interactions between ammonium groups and [PbI6]4− octahedra. We thus incorporate electron-withdrawing fluorine to enhance inorganic–organic cation interdiffusion and promote heterostructure formation. We note that stability relies on interactions between the entire spacer cations and [PbI6]4− octahedra. We therefore introduce anchoring groups that double cation desorption energies, preventing cation migration at elevated temperatures. CsPbI3/(perfluoro-1,4-phenylene)dimethanammonium lead iodide heterostructures enable an efficiency of 21.6% and a maximum power point operating stability at 85 °C of 950 h. We demonstrate 16-cm2 modules with an efficiency of 19.8%.

Abstract Image

无机钙钛矿太阳能组件中2D/3D异质结构形成和稳定的阳离子互扩散控制
无机钙钛矿太阳能电池可以受益于使用二维/三维钙钛矿异质结构的表面钝化。然而,传统的间隔阳离子不能与无机钙钛矿中紧密结合的Cs阳离子交换,形成2D层;或者,当它们能够形成2D层时,它们会在高温下迁移,从而降低设备性能。在这里,我们研究了2D/3D异质结构形成和稳定的机制。我们发现二维/三维异质结构的形成是由铵基和[PbI6]4−八面体之间的相互作用驱动的。因此,我们加入吸电子氟来增强无机-有机阳离子的相互扩散和促进异质结构的形成。我们注意到稳定性依赖于整个间隔阳离子和[PbI6]4−八面体之间的相互作用。因此,我们引入了锚定基团,使阳离子解吸能加倍,防止阳离子在高温下迁移。CsPbI3/(全氟-1,4-苯基)二甲基铵碘化铅异质结构使效率达到21.6%,在85°C时最大功率点工作稳定性为950小时。我们演示了16平方厘米的模块,效率为19.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Energy
Nature Energy Energy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍: Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies. With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector. Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence. In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信