Long‐Life Anode‐Free Lithium Metal Battery Enabled by Synergistic Electrodes Design

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fangding Huang, Xinjian Li, Yu Lin, Xueyang Wang, Wenchang Zhu, Xinghua Chen, Leyu Ding, Xinyu Zhang, Xiaotian Zhu, Chengyuan Peng, Ying He, Chang Lu, Jianqing Zhao, Zhao Deng
{"title":"Long‐Life Anode‐Free Lithium Metal Battery Enabled by Synergistic Electrodes Design","authors":"Fangding Huang, Xinjian Li, Yu Lin, Xueyang Wang, Wenchang Zhu, Xinghua Chen, Leyu Ding, Xinyu Zhang, Xiaotian Zhu, Chengyuan Peng, Ying He, Chang Lu, Jianqing Zhao, Zhao Deng","doi":"10.1002/adfm.202510253","DOIUrl":null,"url":null,"abstract":"Anode‐free lithium metal batteries (AFLMBs) have been emerging for energy‐dense practical applications, but they encounter a major issue of cycling instability due to the poor lithium plating/stripping reversibility on the copper (Cu) current collector during electrochemical cycling. A synergistic electrodes design is reported to ameliorate long‐term cycling performance for AFLMBs. In the cathode, the Li‐rich Li<jats:sub>22</jats:sub>Sn<jats:sub>5</jats:sub>‐Li<jats:sub>2</jats:sub>O‐LiF (LSOF) shell is fabricated on core LiFePO<jats:sub>4</jats:sub> (LFP) particles to provide excessive active lithium ion (Li<jats:sup>+</jats:sup>) during the initial charging as the lithium compensator. Concurrently in the anode, the Cu foil is coated with a conformal and uniform Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> layer through atomic layer deposition (ALD) to obtain the composite current collector. The enhanced lithiophilic property of Cu@ALD‐Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> is conclusively proved by electrochemical measurements, in situ optical microscopy, and theoretical simulations, resulting in improved reversibility and kinetics of the lithium plating/stripping on its surface. The LFP@LSOF||Cu@ALD‐Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> pouch cell with a capacity of 26 mAh achieves a desirable 79.3% capacity retention after 200 cycles, demonstrating significantly enhanced cycling stability for AFLMBs. This work provides a breakthrough solution for lengthening the cycle life of anode‐free lithium metal batteries for their promising practical deployment.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"94 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202510253","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Anode‐free lithium metal batteries (AFLMBs) have been emerging for energy‐dense practical applications, but they encounter a major issue of cycling instability due to the poor lithium plating/stripping reversibility on the copper (Cu) current collector during electrochemical cycling. A synergistic electrodes design is reported to ameliorate long‐term cycling performance for AFLMBs. In the cathode, the Li‐rich Li22Sn5‐Li2O‐LiF (LSOF) shell is fabricated on core LiFePO4 (LFP) particles to provide excessive active lithium ion (Li+) during the initial charging as the lithium compensator. Concurrently in the anode, the Cu foil is coated with a conformal and uniform Al2O3 layer through atomic layer deposition (ALD) to obtain the composite current collector. The enhanced lithiophilic property of Cu@ALD‐Al2O3 is conclusively proved by electrochemical measurements, in situ optical microscopy, and theoretical simulations, resulting in improved reversibility and kinetics of the lithium plating/stripping on its surface. The LFP@LSOF||Cu@ALD‐Al2O3 pouch cell with a capacity of 26 mAh achieves a desirable 79.3% capacity retention after 200 cycles, demonstrating significantly enhanced cycling stability for AFLMBs. This work provides a breakthrough solution for lengthening the cycle life of anode‐free lithium metal batteries for their promising practical deployment.
采用协同电极设计的长寿命无阳极锂金属电池
无阳极锂金属电池(aflmb)已经出现在能量密集的实际应用中,但由于在电化学循环过程中铜(Cu)集流器上的锂电镀/剥离可逆性较差,它们遇到了循环不稳定的主要问题。据报道,一种协同电极设计可以改善aflmb的长期循环性能。在阴极,在LiFePO4 (LFP)核心颗粒上制备富锂的Li22Sn5‐Li2O‐LiF (LSOF)壳层,在初始充电时提供过量的活性锂离子(Li+)作为锂补偿器。同时在阳极上,通过原子层沉积(ALD)在铜箔上涂覆一层共形均匀的Al2O3层,得到复合集流器。通过电化学测量、原位光学显微镜和理论模拟,最终证明了Cu@ALD‐Al2O3的亲锂性增强,从而提高了其表面镀锂/剥离的可逆性和动力学。容量为26 mAh的LFP@LSOF||Cu@ALD‐Al2O3袋状电池在200次循环后达到了理想的79.3%的容量保留率,表明aflmb的循环稳定性显著增强。该研究为延长无阳极锂金属电池的循环寿命提供了突破性的解决方案,具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信