{"title":"Age-dependent brain responses to mechanical stress determine resilience in a chronic lymphatic drainage impairment model.","authors":"Zachary H Gursky,Zohaib Nisar Khan,Sunil Koundal,Ankita Bhardwaj,Joaquin Caceres Melgarejo,Kaiming Xu,Xinan Chen,Hung-Mo Lin,Xianfeng Gu,Hedok Lee,Jonathan Kipnis,Yoav Dori,Allen Tannenbaum,Laura Santambrogio,Helene Benveniste","doi":"10.1172/jci182555","DOIUrl":null,"url":null,"abstract":"The outflow of 'dirty' brain fluids from the glymphatic system drains via the meningeal lymphatic vessels to the lymph nodes in the neck, primarily the deep cervical lymph nodes (dcLN). However, it is unclear whether dcLN drainage is essential for normal cerebral homeostasis. Using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and computational fluid dynamics, we studied the impact of long-term mechanical stress from compromised dcLN drainage on brain solute and fluid outflow in anesthetized rats. We found that in young, but not middle-aged rats, impairment of dcLN drainage was linked to moderately increased intracranial pressure and the emergence of extracranial peri-venous drainage, with no evidence of hydrocephalus at any age. Surprisingly, both age groups showed enhanced brain solute clearance despite reduced glymphatic influx. CSF proteomic analysis revealed cellular stress in the form of low-grade inflammation, and up-regulation of pathways associated with neurodegeneration and blood brain barrier leakage in the rats with impaired lymphatic drainage. Our findings highlight that dcLN drainage is indeed a prerequisite for normal cerebral homeostasis in the rat and reveal the brain's age-dependent compensatory responses to chronic impairment of its lymphatic drainage pathways.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"205 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Clinical Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1172/jci182555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The outflow of 'dirty' brain fluids from the glymphatic system drains via the meningeal lymphatic vessels to the lymph nodes in the neck, primarily the deep cervical lymph nodes (dcLN). However, it is unclear whether dcLN drainage is essential for normal cerebral homeostasis. Using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and computational fluid dynamics, we studied the impact of long-term mechanical stress from compromised dcLN drainage on brain solute and fluid outflow in anesthetized rats. We found that in young, but not middle-aged rats, impairment of dcLN drainage was linked to moderately increased intracranial pressure and the emergence of extracranial peri-venous drainage, with no evidence of hydrocephalus at any age. Surprisingly, both age groups showed enhanced brain solute clearance despite reduced glymphatic influx. CSF proteomic analysis revealed cellular stress in the form of low-grade inflammation, and up-regulation of pathways associated with neurodegeneration and blood brain barrier leakage in the rats with impaired lymphatic drainage. Our findings highlight that dcLN drainage is indeed a prerequisite for normal cerebral homeostasis in the rat and reveal the brain's age-dependent compensatory responses to chronic impairment of its lymphatic drainage pathways.