Isogenic induced-pluripotent-stem-cell-derived airway- and alveolus-on-chip models reveal specific innate immune responses

IF 26.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Sachin Yadav, Kazuya Fujimoto, Toru Takenaga, Senye Takahashi, Yukiko Muramoto, Ryuta Mikawa, Takeshi Noda, Shimpei Gotoh, Ryuji Yokokawa
{"title":"Isogenic induced-pluripotent-stem-cell-derived airway- and alveolus-on-chip models reveal specific innate immune responses","authors":"Sachin Yadav, Kazuya Fujimoto, Toru Takenaga, Senye Takahashi, Yukiko Muramoto, Ryuta Mikawa, Takeshi Noda, Shimpei Gotoh, Ryuji Yokokawa","doi":"10.1038/s41551-025-01444-2","DOIUrl":null,"url":null,"abstract":"<p>The development of microphysiological systems for preclinical research is often hindered by the limited availability of reliable cell sources, especially when multiple organs or tissues from a single patient are needed for comparative studies of the host innate immune response. In this study, we develop human airway-on-chip and alveolus-on-chip models using lung progenitor cells derived from isogenic induced pluripotent stem cells. Our results using SARS-CoV-2 and influenza reveal distinct initial innate immune responses in the airway- and alveolus-on-chip models. SARS-CoV-2-infected airway chips show a robust early interferon-dependent innate immune response, while alveolus chips show dysregulated and delayed interferon activation alongside a significantly upregulated chemokine pathway. In contrast, influenza infection induces a more pronounced innate immune response and greater cellular damage in both chips compared with SARS-CoV-2. Consequently, airway- and alveolus-on-chip models derived from induced pluripotent stem cells offer a viral pathology platform with screening potential for future therapeutic agents.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"56 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01444-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of microphysiological systems for preclinical research is often hindered by the limited availability of reliable cell sources, especially when multiple organs or tissues from a single patient are needed for comparative studies of the host innate immune response. In this study, we develop human airway-on-chip and alveolus-on-chip models using lung progenitor cells derived from isogenic induced pluripotent stem cells. Our results using SARS-CoV-2 and influenza reveal distinct initial innate immune responses in the airway- and alveolus-on-chip models. SARS-CoV-2-infected airway chips show a robust early interferon-dependent innate immune response, while alveolus chips show dysregulated and delayed interferon activation alongside a significantly upregulated chemokine pathway. In contrast, influenza infection induces a more pronounced innate immune response and greater cellular damage in both chips compared with SARS-CoV-2. Consequently, airway- and alveolus-on-chip models derived from induced pluripotent stem cells offer a viral pathology platform with screening potential for future therapeutic agents.

Abstract Image

等基因诱导多能干细胞衍生的气道和肺泡芯片模型揭示了特异性先天免疫反应
用于临床前研究的微生理系统的开发常常受到可靠细胞来源有限的阻碍,特别是当需要来自单个患者的多个器官或组织进行宿主先天免疫反应的比较研究时。在这项研究中,我们利用来自等基因诱导的多能干细胞的肺祖细胞建立了人类气道芯片和肺泡芯片模型。我们使用SARS-CoV-2和流感的结果揭示了气道和肺泡芯片模型中不同的初始先天免疫反应。sars - cov -2感染的气道芯片显示出强大的早期干扰素依赖性先天免疫应答,而肺泡芯片显示干扰素激活失调和延迟,同时趋化因子通路显著上调。相比之下,与SARS-CoV-2相比,流感感染在两种芯片中引起更明显的先天免疫反应和更大的细胞损伤。因此,来自诱导多能干细胞的气道和肺泡芯片模型提供了一个具有筛选未来治疗剂潜力的病毒病理学平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Biomedical Engineering
Nature Biomedical Engineering Medicine-Medicine (miscellaneous)
CiteScore
45.30
自引率
1.10%
发文量
138
期刊介绍: Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信