{"title":"Megakaryocytes as mitochondria factories: potential donors for mitochondria transplantation.","authors":"Émilie Mercure, Martin Pelletier, Éric Boilard","doi":"10.1097/MOH.0000000000000889","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>There is an increasing recognition that mitochondria are dynamic regulators of cell fate. Mitochondria transplantation has emerged as a promising therapeutic strategy for conditions ranging from metabolic disorders to neurodegenerative diseases. Thus, there is a growing need for scalable mitochondrial sources for transplantation. We highlight megakaryocytes, best known for their role in platelet production, as a novel and versatile candidate source for mitochondria transplantation.</p><p><strong>Recent findings: </strong>Megakaryocytes are naturally equipped to package and deliver functional mitochondria when producing platelets. Furthermore, MKs can share their mitochondria with neighboring cells in the bone marrow. Given the abundance of mitochondria in megakaryocytes, they may represent an ideal source of mitochondria for transplantation. A better understanding of the role of mitochondria in megakaryocyte heterogeneity and metabolic functions may help harness megakaryocytes for therapeutic transplantation applications.</p><p><strong>Summary: </strong>Megakaryocyte-derived mitochondria transplantation offers a promising avenue for treating metabolic disorders, leveraging existing mechanisms. Future research should address limitations in megakaryocyte biogenesis and heterogeneity, and optimize delivery systems to maximize therapeutic efficacy.</p>","PeriodicalId":55196,"journal":{"name":"Current Opinion in Hematology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MOH.0000000000000889","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose of review: There is an increasing recognition that mitochondria are dynamic regulators of cell fate. Mitochondria transplantation has emerged as a promising therapeutic strategy for conditions ranging from metabolic disorders to neurodegenerative diseases. Thus, there is a growing need for scalable mitochondrial sources for transplantation. We highlight megakaryocytes, best known for their role in platelet production, as a novel and versatile candidate source for mitochondria transplantation.
Recent findings: Megakaryocytes are naturally equipped to package and deliver functional mitochondria when producing platelets. Furthermore, MKs can share their mitochondria with neighboring cells in the bone marrow. Given the abundance of mitochondria in megakaryocytes, they may represent an ideal source of mitochondria for transplantation. A better understanding of the role of mitochondria in megakaryocyte heterogeneity and metabolic functions may help harness megakaryocytes for therapeutic transplantation applications.
Summary: Megakaryocyte-derived mitochondria transplantation offers a promising avenue for treating metabolic disorders, leveraging existing mechanisms. Future research should address limitations in megakaryocyte biogenesis and heterogeneity, and optimize delivery systems to maximize therapeutic efficacy.
期刊介绍:
Current Opinion in Hematology is an easy-to-digest bimonthly journal covering the most interesting and important advances in the field of hematology. Its hand-picked selection of editors ensure the highest quality selection of unbiased review articles on themes from nine key subject areas, including myeloid biology, Vascular biology, hematopoiesis and erythroid system and its diseases.