Valentin A Manuvera, Pavel A Bobrovsky, Daria D Kharlampieva, Ekaterina N Grafskaia, Ksenia A Brovina, Maria Y Serebrennikova, Vassili N Lazarev
{"title":"Bacterial Expression System with Deep Repression and Activation via CRISPR-Cas9.","authors":"Valentin A Manuvera, Pavel A Bobrovsky, Daria D Kharlampieva, Ekaterina N Grafskaia, Ksenia A Brovina, Maria Y Serebrennikova, Vassili N Lazarev","doi":"10.1177/25731599251358852","DOIUrl":null,"url":null,"abstract":"<p><p>Incomplete repression of recombinant genes encoding toxic polypeptides can suppress cell growth even in the absence of a transcription inducer. To address this issue, we developed a CRISPR-Cas9-based genome editing approach that directly modifies the plasmid encoding the toxic peptide during <i>Escherichia coli</i> cultivation. The constructed plasmids contained a transcription terminator between the promoter and coding region, preventing full gene expression through abortive transcription. Upon CRISPR-Cas9 activation, this region is excised, thus restoring the functional gene. To implement this approach, we modified widely used pET-series expression plasmids by adding extra terminators in the 5'-untranslated region of the recombinant gene. Four antimicrobial peptides with strong bactericidal properties served as toxic gene products, while green fluorescent protein was used to assess the efficiency of expression repression. As a result, we developed an expression system with strong repression, which is activated by CRISPR-Cas9-mediated excision of a DNA fragment from the plasmids.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CRISPR Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/25731599251358852","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Incomplete repression of recombinant genes encoding toxic polypeptides can suppress cell growth even in the absence of a transcription inducer. To address this issue, we developed a CRISPR-Cas9-based genome editing approach that directly modifies the plasmid encoding the toxic peptide during Escherichia coli cultivation. The constructed plasmids contained a transcription terminator between the promoter and coding region, preventing full gene expression through abortive transcription. Upon CRISPR-Cas9 activation, this region is excised, thus restoring the functional gene. To implement this approach, we modified widely used pET-series expression plasmids by adding extra terminators in the 5'-untranslated region of the recombinant gene. Four antimicrobial peptides with strong bactericidal properties served as toxic gene products, while green fluorescent protein was used to assess the efficiency of expression repression. As a result, we developed an expression system with strong repression, which is activated by CRISPR-Cas9-mediated excision of a DNA fragment from the plasmids.
CRISPR JournalBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.30
自引率
2.70%
发文量
76
期刊介绍:
In recognition of this extraordinary scientific and technological era, Mary Ann Liebert, Inc., publishers recently announced the creation of The CRISPR Journal -- an international, multidisciplinary peer-reviewed journal publishing outstanding research on the myriad applications and underlying technology of CRISPR.
Debuting in 2018, The CRISPR Journal will be published online and in print with flexible open access options, providing a high-profile venue for groundbreaking research, as well as lively and provocative commentary, analysis, and debate. The CRISPR Journal adds an exciting and dynamic component to the Mary Ann Liebert, Inc. portfolio, which includes GEN (Genetic Engineering & Biotechnology News) and more than 80 leading peer-reviewed journals.